vit5-base-skill-extraction-lora-ver2
This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0795
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.2896 | 0.5051 | 300 | 1.9677 |
| 1.8529 | 1.0101 | 600 | 1.6651 |
| 1.6366 | 1.5152 | 900 | 1.4975 |
| 1.5251 | 2.0202 | 1200 | 1.3960 |
| 1.4233 | 2.5253 | 1500 | 1.3370 |
| 1.35 | 3.0303 | 1800 | 1.2921 |
| 1.2733 | 3.5354 | 2100 | 1.2446 |
| 1.2032 | 4.0404 | 2400 | 1.2183 |
| 1.1618 | 4.5455 | 2700 | 1.1813 |
| 1.1292 | 5.0505 | 3000 | 1.1564 |
| 1.0818 | 5.5556 | 3300 | 1.1442 |
| 1.021 | 6.0606 | 3600 | 1.1281 |
| 0.9924 | 6.5657 | 3900 | 1.1033 |
| 0.9653 | 7.0707 | 4200 | 1.0956 |
| 0.9468 | 7.5758 | 4500 | 1.0899 |
| 0.9299 | 8.0808 | 4800 | 1.0839 |
| 0.8824 | 8.5859 | 5100 | 1.0800 |
| 0.8931 | 9.0909 | 5400 | 1.0817 |
| 0.9111 | 9.5960 | 5700 | 1.0795 |
Framework versions
- PEFT 0.10.0
- Transformers 4.49.0
- Pytorch 2.4.1+cu118
- Datasets 4.1.1
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nguyen10001/vit5-base-skill-extraction-lora-ver2
Base model
VietAI/vit5-base