nguyen10001's picture
End of training
02fdbbf verified
metadata
library_name: peft
license: mit
base_model: VietAI/vit5-base
tags:
  - generated_from_trainer
model-index:
  - name: vit5-base-v2-paraphase_data
    results: []

vit5-base-v2-paraphase_data

This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1037

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.3847 0.4980 3300 1.2644
1.2837 0.9961 6600 1.1851
1.23 1.4941 9900 1.1554
1.2291 1.9922 13200 1.1341
1.1839 2.4902 16500 1.1218
1.1908 2.9882 19800 1.1150
1.1778 3.4863 23100 1.1090
1.1674 3.9843 26400 1.1044
1.1712 4.4823 29700 1.1038
1.1709 4.9804 33000 1.1037

Framework versions

  • PEFT 0.10.0
  • Transformers 4.49.0
  • Pytorch 2.4.1+cu118
  • Datasets 4.1.1
  • Tokenizers 0.21.0