classifier
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9760
- F1-micro: 0.7354
- F1-macro: 0.7202
- F1-weighted: 0.7314
- Accuracy: 0.7354
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1-micro | F1-macro | F1-weighted | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 386 | 0.7548 | 0.6615 | 0.6527 | 0.6627 | 0.6615 |
0.8384 | 2.0 | 772 | 0.6518 | 0.7134 | 0.6981 | 0.7073 | 0.7134 |
0.6001 | 3.0 | 1158 | 0.6752 | 0.7419 | 0.7313 | 0.7408 | 0.7419 |
0.3926 | 4.0 | 1544 | 0.7489 | 0.7354 | 0.7232 | 0.7304 | 0.7354 |
0.3926 | 5.0 | 1930 | 0.9760 | 0.7354 | 0.7202 | 0.7314 | 0.7354 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 50
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nicolauduran45/deberta-v3-base4scientific-claim-verification
Base model
microsoft/deberta-v3-base