metadata
datasets:
- nvidia/OpenCodeReasoning-2
- GetSoloTech/Code-Reasoning
base_model: GetSoloTech/GPT-OSS-Code-Reasoning-20B
library_name: mlx
tags:
- code-reasoning
- coding
- reasoning
- problem-solving
- algorithms
- python
- c++
- competitive-programming
- vllm
- mlx
pipeline_tag: text-generation
GPT-OSS-Code-Reasoning-20B-qx86-hi-mlx
This model GPT-OSS-Code-Reasoning-20B-qx86-hi-mlx was converted to MLX format from GetSoloTech/GPT-OSS-Code-Reasoning-20B using mlx-lm version 0.26.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("GPT-OSS-Code-Reasoning-20B-qx86-hi-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)