Text Generation
MLX
Safetensors
qwen3_moe
programming
code generation
code
codeqwen
Mixture of Experts
coding
coder
qwen2
chat
qwen
qwen-coder
Qwen3-30B-A3B-Thinking-2507
Qwen3-30B-A3B
mixture of experts
128 experts
8 active experts
256k context
qwen3
finetune
brainstorm 20x
brainstorm
thinking
reasoning
uncensored
abliterated
conversational
6-bit
metadata
license: apache-2.0
library_name: mlx
language:
- en
- fr
- zh
- de
tags:
- programming
- code generation
- code
- codeqwen
- moe
- coding
- coder
- qwen2
- chat
- qwen
- qwen-coder
- Qwen3-30B-A3B-Thinking-2507
- Qwen3-30B-A3B
- mixture of experts
- 128 experts
- 8 active experts
- 256k context
- qwen3
- finetune
- brainstorm 20x
- brainstorm
- thinking
- reasoning
- uncensored
- abliterated
- qwen3_moe
- mlx
base_model: >-
DavidAU/Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER
pipeline_tag: text-generation
Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER-q6-mlx
Performance Evaluation
The model was evaluated on seven standard NLP benchmarks:
Benchmark brainstormed‑q6 bf16 q6
ARC‑challenge 0.387 0.387 0.378
ARC‑easy 0.447 0.436 0.434
BoolQ 0.625 0.628 0.636
HellaSwag 0.648 0.616 0.618
OpenBookQA 0.380 0.400 0.400
PiQA 0.768 0.763 0.765
Winogrande 0.636 0.639 0.634
Avg (7) 0.5559 0.5527 0.5521
The brain‑stormed module consistently improves performance on ARC‑easy, HellaSwag and PiQA, while matching or slightly underperforming on the other tasks. The overall average performance is +0.0038 (+0.4 %) over the non‑brainstormed baselines.
This model Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER-q6-mlx was converted to MLX format from DavidAU/Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER using mlx-lm version 0.26.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER-q6-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)