metadata
license: apache-2.0
tags:
- bias-detection
- news-analysis
- media-bias
- journalism
- content-analysis
- mlx
language:
- en
pipeline_tag: text-generation
base_model: EmergentMethods/Qwen3-4B-BiasExpert
library_name: mlx
Qwen3-4B-BiasExpert-dwq6-mlx
find and address bias in your code
This model Qwen3-4B-BiasExpert-dwq6-mlx was converted to MLX format from EmergentMethods/Qwen3-4B-BiasExpert using mlx-lm version 0.26.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Qwen3-4B-BiasExpert-dwq6-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)