FP8-Block Quantized Models
Collection
Collection of State-of-the-art FP8 Block Quantized Models
•
7 items
•
Updated
Quantized version of Qwen/Qwen3-30B-A3B.
This model was obtained by quantizing the weights and activations of Qwen/Qwen3-30B-A3B to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
vllm serve nm-testing/Qwen3-30B-A3B-FP8-block --tensor_parallel_size 4
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "nm-testing/Qwen3-30B-A3B-FP8-block"
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
},
{"type": "text", "text": "Describe this image."},
],
}
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
This model was quantized using the llm-compressor library as shown below.
from transformers import AutoProcessor, Qwen3ForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = "Qwen/Qwen3-30B-A3B"
# Load model.
model = Qwen3ForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-block quantization
# * quantize the activations to fp8 with dynamic token activations
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=["lm_head"],
)
# Apply quantization.
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
The model was evaluated on the OpenLLMv1 leaderboard task, using lm-evaluation-harness, on reasoning tasks using lighteval. vLLM was used for all evaluations.
lm-evaluation-harness
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Qwen3-30B-A3B-FP8-block",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=4,gpu_memory_utilization=0.8,enable_chunked_prefill=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
lighteval
lighteval_model_arguments.yaml
model_parameters:
model_name: nm-testing/Qwen3-30B-A3B-FP8-block
dtype: auto
gpu_memory_utilization: 0.9
generation_parameters:
temperature: 0.6
min_p: 0.0
top_p: 0.95
top_k: 20
max_new_tokens: 32768
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime25|0 \
Category | Metric | Qwen/Qwen3-30B-A3B | nm-testing/Qwen3-30B-A3B-FP8-block | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | abc | ijk | xyz |
GSM8K (Strict-Match, 5-shot) | abc | ijk | xyz | |
HellaSwag (Acc-Norm, 10-shot) | abc | ijk | xyz | |
MMLU (Acc, 5-shot) | abc | ijk | xyz | |
TruthfulQA (MC2, 0-shot) | abc | ijk | xyz | |
Winogrande (Acc, 5-shot) | abc | ijk | xyz | |
Average Score | abc | ijk | xyz | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | abc | ijk | xyz |
BBH (Acc-Norm, 3-shot) | abc | ijk | xyz | |
Math-Hard (Exact-Match, 4-shot) | abc | ijk | xyz | |
GPQA (Acc-Norm, 0-shot) | abc | ijk | xyz | |
MUSR (Acc-Norm, 0-shot) | abc | ijk | xyz | |
MMLU-Pro (Acc, 5-shot) | abc | ijk | xyz | |
Average Score | abc | ijk | xyz | |
Coding | HumanEval Pass@1 | abc | ijk | xyz |