Lenson
lebarnon/RoBERTa-CompareTransformers-Imdb
dc7ab35
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
datasets:
  - imdb
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: imdb
          type: imdb
          config: plain_text
          split: train
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9286666512489319
          - name: Precision
            type: precision
            value: 0.9286666512489319
          - name: Recall
            type: recall
            value: 0.9286666512489319
          - name: F1
            type: f1
            value: 0.9286666512489319

results

This model is a fine-tuned version of roberta-base on the imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2691
  • Accuracy: 0.9287
  • Precision: 0.9287
  • Recall: 0.9287
  • F1: 0.9287
  • Auroc: 0.9772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auroc
0.1764 0.46 500 0.2698 0.9044 0.9044 0.9044 0.9044 0.9738
0.3348 0.91 1000 0.2755 0.9117 0.9117 0.9117 0.9117 0.9686
0.1478 1.37 1500 0.3275 0.9109 0.9109 0.9109 0.9109 0.9771
0.2051 1.83 2000 0.2575 0.9309 0.9309 0.9309 0.9309 0.9793
0.1435 2.29 2500 0.3140 0.9245 0.9245 0.9245 0.9245 0.9783
0.1425 2.74 3000 0.2691 0.9287 0.9287 0.9287 0.9287 0.9772

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1