t5-small-mse-summarization

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1108
  • Rouge1: 43.1145
  • Rouge2: 23.2262
  • Rougel: 37.218
  • Rougelsum: 41.0897
  • Bleurt: -0.8051
  • Gen Len: 18.549

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleurt Gen Len
1.5207 1.0 267 1.2922 38.8738 19.1958 32.8458 36.9993 -0.9061 18.668
1.363 2.0 534 1.2340 39.8466 20.0452 33.9101 37.7708 -0.8925 18.657
1.3062 3.0 801 1.2057 40.5536 20.8249 34.5221 38.4648 -0.8625 18.602
1.272 4.0 1068 1.1782 41.0078 21.2186 35.0101 38.9186 -0.8595 18.602
1.2312 5.0 1335 1.1688 41.521 21.7934 35.704 39.4718 -0.842 18.486
1.2052 6.0 1602 1.1557 42.1037 22.4291 36.3554 40.1124 -0.8432 18.533
1.1842 7.0 1869 1.1440 42.4438 22.6456 36.5729 40.3134 -0.8288 18.553
1.1643 8.0 2136 1.1408 42.245 22.4859 36.3637 40.2193 -0.8284 18.622
1.1495 9.0 2403 1.1320 42.5362 22.5034 36.5092 40.4552 -0.8211 18.57
1.1368 10.0 2670 1.1301 42.5159 22.462 36.4646 40.3968 -0.819 18.538
1.1203 11.0 2937 1.1243 42.2803 22.5963 36.3454 40.2987 -0.8242 18.522
1.1116 12.0 3204 1.1197 42.8078 22.8409 36.7344 40.8186 -0.821 18.565
1.099 13.0 3471 1.1193 42.7423 22.9397 36.7894 40.7298 -0.8125 18.552
1.0976 14.0 3738 1.1176 42.9002 23.2394 37.0215 40.9211 -0.8156 18.568
1.0816 15.0 4005 1.1133 43.0007 23.3093 37.2037 40.9719 -0.8059 18.519
1.084 16.0 4272 1.1146 42.9053 23.2391 37.0542 40.8826 -0.8104 18.533
1.0755 17.0 4539 1.1124 43.0429 23.2773 37.1389 41.0755 -0.8086 18.544
1.0748 18.0 4806 1.1121 43.2243 23.4179 37.2039 41.143 -0.8048 18.548
1.072 19.0 5073 1.1106 43.1776 23.3061 37.3105 41.1392 -0.8039 18.549
1.0671 20.0 5340 1.1108 43.1145 23.2262 37.218 41.0897 -0.8051 18.549

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.