jp-parallel-gloss
jp-parallel-gloss makes predictions on similarity of Japanese-to-English glosses (definitions).
This is a sentence-transformers model fine-tuned using a dataset of 4M+ parallel/non-parallel gloss pairs from the JMDict database and antonym/synonym pairs from WordNet. The base model used is cross-encoder/ms-macro-MiniLM-L-6-v2
. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
See its application in Kotoba Tag
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Language: English
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'dearest',
'to become verminous',
"having an (overly) strong attachment to one's mother",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9897545950802664 |
cosine_accuracy_threshold | 0.4331962466239929 |
cosine_f1 | 0.9685565783209015 |
cosine_f1_threshold | 0.4324696958065033 |
cosine_precision | 0.9696722939424032 |
cosine_recall | 0.9674434272579558 |
cosine_ap | 0.9934008701351884 |
cosine_mcc | 0.9624377824608901 |
Training Details
- Size: 4,404,844 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string int details - min: 3 tokens
- mean: 5.65 tokens
- max: 27 tokens
- min: 3 tokens
- mean: 5.64 tokens
- max: 31 tokens
- False: ~91.80%
- True: ~8.20%
- Samples:
text1 text2 label based on
making up (a deficiency)
False
folk (esp. music)
if possible
False
to start
to die
False
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation
- Size: 550,605 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string int details - min: 3 tokens
- mean: 5.74 tokens
- max: 28 tokens
- min: 3 tokens
- mean: 5.7 tokens
- max: 32 tokens
- False: ~91.60%
- True: ~8.40%
- Samples:
text1 text2 label taking one's children along (to an event, into a new marriage, etc.)
disconnect
False
to thunder
sheet
False
throwing event (e.g. javelin, discus, shot put)
extinctive prescription
False
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 32weight_decay
: 0.01num_train_epochs
: 8warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | dev_cosine_ap |
---|---|---|---|---|
-1 | -1 | - | - | 0.8061 |
0.0145 | 500 | 7.2395 | - | - |
0.0291 | 1000 | 7.2421 | - | - |
0.0436 | 1500 | 6.5757 | - | - |
0.0581 | 2000 | 5.96 | - | - |
0.0726 | 2500 | 5.5217 | - | - |
0.0872 | 3000 | 5.3224 | - | - |
0.1017 | 3500 | 5.2104 | - | - |
0.1162 | 4000 | 5.0525 | - | - |
0.1308 | 4500 | 5.1228 | - | - |
0.1453 | 5000 | 5.0317 | 1.5742 | 0.8818 |
0.1598 | 5500 | 4.9875 | - | - |
0.1744 | 6000 | 4.85 | - | - |
0.1889 | 6500 | 4.9348 | - | - |
0.2034 | 7000 | 4.7928 | - | - |
0.2179 | 7500 | 4.8412 | - | - |
0.2325 | 8000 | 4.8304 | - | - |
0.2470 | 8500 | 4.8031 | - | - |
0.2615 | 9000 | 4.7567 | - | - |
0.2761 | 9500 | 4.7847 | - | - |
0.2906 | 10000 | 4.7743 | 1.3281 | 0.9066 |
0.3051 | 10500 | 4.6624 | - | - |
0.3196 | 11000 | 4.6653 | - | - |
0.3342 | 11500 | 4.6047 | - | - |
0.3487 | 12000 | 4.5972 | - | - |
0.3632 | 12500 | 4.6678 | - | - |
0.3778 | 13000 | 4.5873 | - | - |
0.3923 | 13500 | 4.6007 | - | - |
0.4068 | 14000 | 4.526 | - | - |
0.4214 | 14500 | 4.576 | - | - |
0.4359 | 15000 | 4.5587 | 1.1674 | 0.9213 |
0.4504 | 15500 | 4.4398 | - | - |
0.4649 | 16000 | 4.529 | - | - |
0.4795 | 16500 | 4.4231 | - | - |
0.4940 | 17000 | 4.5204 | - | - |
0.5085 | 17500 | 4.508 | - | - |
0.5231 | 18000 | 4.4563 | - | - |
0.5376 | 18500 | 4.4922 | - | - |
0.5521 | 19000 | 4.3455 | - | - |
0.5666 | 19500 | 4.393 | - | - |
0.5812 | 20000 | 4.3754 | 1.1346 | 0.9267 |
0.5957 | 20500 | 4.3033 | - | - |
0.6102 | 21000 | 4.4046 | - | - |
0.6248 | 21500 | 4.4623 | - | - |
0.6393 | 22000 | 4.3426 | - | - |
0.6538 | 22500 | 4.3791 | - | - |
0.6684 | 23000 | 4.4055 | - | - |
0.6829 | 23500 | 4.3898 | - | - |
0.6974 | 24000 | 4.3318 | - | - |
0.7119 | 24500 | 4.3469 | - | - |
0.7265 | 25000 | 4.39 | 1.1003 | 0.9304 |
0.7410 | 25500 | 4.2806 | - | - |
0.7555 | 26000 | 4.3901 | - | - |
0.7701 | 26500 | 4.3526 | - | - |
0.7846 | 27000 | 4.2083 | - | - |
0.7991 | 27500 | 4.4242 | - | - |
0.8136 | 28000 | 4.3139 | - | - |
0.8282 | 28500 | 4.2971 | - | - |
0.8427 | 29000 | 4.2024 | - | - |
0.8572 | 29500 | 4.2684 | - | - |
0.8718 | 30000 | 4.3175 | 0.9830 | 0.9365 |
0.8863 | 30500 | 4.2168 | - | - |
0.9008 | 31000 | 4.1969 | - | - |
0.9154 | 31500 | 4.248 | - | - |
0.9299 | 32000 | 4.1886 | - | - |
0.9444 | 32500 | 4.269 | - | - |
0.9589 | 33000 | 4.1733 | - | - |
0.9735 | 33500 | 4.1176 | - | - |
0.9880 | 34000 | 4.2357 | - | - |
1.0025 | 34500 | 4.0826 | - | - |
1.0171 | 35000 | 3.6937 | 0.9222 | 0.9416 |
1.0316 | 35500 | 3.9462 | - | - |
1.0461 | 36000 | 3.8201 | - | - |
1.0606 | 36500 | 3.8564 | - | - |
1.0752 | 37000 | 3.8252 | - | - |
1.0897 | 37500 | 3.8981 | - | - |
1.1042 | 38000 | 3.8162 | - | - |
1.1188 | 38500 | 3.742 | - | - |
1.1333 | 39000 | 3.7388 | - | - |
1.1478 | 39500 | 3.852 | - | - |
1.1624 | 40000 | 3.7787 | 0.8873 | 0.9440 |
1.1769 | 40500 | 3.6863 | - | - |
1.1914 | 41000 | 3.7342 | - | - |
1.2059 | 41500 | 3.7647 | - | - |
1.2205 | 42000 | 3.7589 | - | - |
1.2350 | 42500 | 3.7183 | - | - |
1.2495 | 43000 | 3.8539 | - | - |
1.2641 | 43500 | 3.7406 | - | - |
1.2786 | 44000 | 3.7291 | - | - |
1.2931 | 44500 | 3.729 | - | - |
1.3076 | 45000 | 3.6944 | 0.8696 | 0.9457 |
1.3222 | 45500 | 3.8864 | - | - |
1.3367 | 46000 | 3.7167 | - | - |
1.3512 | 46500 | 3.7737 | - | - |
1.3658 | 47000 | 3.7781 | - | - |
1.3803 | 47500 | 3.7873 | - | - |
1.3948 | 48000 | 3.6664 | - | - |
1.4094 | 48500 | 3.8184 | - | - |
1.4239 | 49000 | 3.6521 | - | - |
1.4384 | 49500 | 3.7833 | - | - |
1.4529 | 50000 | 3.7294 | 0.8075 | 0.9504 |
1.4675 | 50500 | 3.7328 | - | - |
1.4820 | 51000 | 3.7784 | - | - |
1.4965 | 51500 | 3.6691 | - | - |
1.5111 | 52000 | 3.6275 | - | - |
1.5256 | 52500 | 3.7145 | - | - |
1.5401 | 53000 | 3.6423 | - | - |
1.5546 | 53500 | 3.6464 | - | - |
1.5692 | 54000 | 3.6415 | - | - |
1.5837 | 54500 | 3.7093 | - | - |
1.5982 | 55000 | 3.6996 | 0.7741 | 0.9527 |
1.6128 | 55500 | 3.6644 | - | - |
1.6273 | 56000 | 3.6496 | - | - |
1.6418 | 56500 | 3.6891 | - | - |
1.6564 | 57000 | 3.7227 | - | - |
1.6709 | 57500 | 3.6413 | - | - |
1.6854 | 58000 | 3.6085 | - | - |
1.6999 | 58500 | 3.4957 | - | - |
1.7145 | 59000 | 3.5888 | - | - |
1.7290 | 59500 | 3.6562 | - | - |
1.7435 | 60000 | 3.6091 | 0.7441 | 0.9549 |
1.7581 | 60500 | 3.4945 | - | - |
1.7726 | 61000 | 3.5744 | - | - |
1.7871 | 61500 | 3.6632 | - | - |
1.8016 | 62000 | 3.5322 | - | - |
1.8162 | 62500 | 3.4866 | - | - |
1.8307 | 63000 | 3.5391 | - | - |
1.8452 | 63500 | 3.4714 | - | - |
1.8598 | 64000 | 3.4245 | - | - |
1.8743 | 64500 | 3.4765 | - | - |
1.8888 | 65000 | 3.4499 | 0.7203 | 0.9563 |
1.9034 | 65500 | 3.5459 | - | - |
1.9179 | 66000 | 3.6055 | - | - |
1.9324 | 66500 | 3.5734 | - | - |
1.9469 | 67000 | 3.5724 | - | - |
1.9615 | 67500 | 3.5344 | - | - |
1.9760 | 68000 | 3.4783 | - | - |
1.9905 | 68500 | 3.5332 | - | - |
2.0051 | 69000 | 3.1724 | - | - |
2.0196 | 69500 | 2.8641 | - | - |
2.0341 | 70000 | 2.7543 | 0.7252 | 0.9577 |
2.0486 | 70500 | 2.8778 | - | - |
2.0632 | 71000 | 2.5721 | - | - |
2.0777 | 71500 | 2.7482 | - | - |
2.0922 | 72000 | 2.8025 | - | - |
2.1068 | 72500 | 2.8993 | - | - |
2.1213 | 73000 | 2.9477 | - | - |
2.1358 | 73500 | 2.8873 | - | - |
2.1504 | 74000 | 2.9593 | - | - |
2.1649 | 74500 | 2.8642 | - | - |
2.1794 | 75000 | 2.9113 | 0.7252 | 0.9582 |
2.1939 | 75500 | 2.8282 | - | - |
2.2085 | 76000 | 2.9086 | - | - |
2.2230 | 76500 | 2.7911 | - | - |
2.2375 | 77000 | 2.9013 | - | - |
2.2521 | 77500 | 2.9883 | - | - |
2.2666 | 78000 | 2.7996 | - | - |
2.2811 | 78500 | 2.9005 | - | - |
2.2956 | 79000 | 2.8725 | - | - |
2.3102 | 79500 | 2.9003 | - | - |
2.3247 | 80000 | 3.0029 | 0.6799 | 0.9607 |
2.3392 | 80500 | 2.9904 | - | - |
2.3538 | 81000 | 2.9155 | - | - |
2.3683 | 81500 | 2.933 | - | - |
2.3828 | 82000 | 2.8691 | - | - |
2.3973 | 82500 | 3.003 | - | - |
2.4119 | 83000 | 2.9573 | - | - |
2.4264 | 83500 | 2.8678 | - | - |
2.4409 | 84000 | 3.0882 | - | - |
2.4555 | 84500 | 2.8722 | - | - |
2.4700 | 85000 | 2.9527 | 0.6760 | 0.9610 |
2.4845 | 85500 | 3.1515 | - | - |
2.4991 | 86000 | 2.9227 | - | - |
2.5136 | 86500 | 2.9474 | - | - |
2.5281 | 87000 | 2.9981 | - | - |
2.5426 | 87500 | 2.8989 | - | - |
2.5572 | 88000 | 2.8141 | - | - |
2.5717 | 88500 | 3.0488 | - | - |
2.5862 | 89000 | 2.8426 | - | - |
2.6008 | 89500 | 2.7394 | - | - |
2.6153 | 90000 | 3.0399 | 0.6430 | 0.9628 |
2.6298 | 90500 | 2.9426 | - | - |
2.6443 | 91000 | 2.7746 | - | - |
2.6589 | 91500 | 2.9781 | - | - |
2.6734 | 92000 | 2.8177 | - | - |
2.6879 | 92500 | 2.6764 | - | - |
2.7025 | 93000 | 2.8852 | - | - |
2.7170 | 93500 | 2.8658 | - | - |
2.7315 | 94000 | 2.9031 | - | - |
2.7461 | 94500 | 2.9051 | - | - |
2.7606 | 95000 | 2.9715 | 0.6347 | 0.9636 |
2.7751 | 95500 | 2.8294 | - | - |
2.7896 | 96000 | 2.9833 | - | - |
2.8042 | 96500 | 2.8931 | - | - |
2.8187 | 97000 | 2.866 | - | - |
2.8332 | 97500 | 2.7796 | - | - |
2.8478 | 98000 | 2.7783 | - | - |
2.8623 | 98500 | 2.9983 | - | - |
2.8768 | 99000 | 2.965 | - | - |
2.8913 | 99500 | 2.9125 | - | - |
2.9059 | 100000 | 2.8308 | 0.6162 | 0.9649 |
2.9204 | 100500 | 2.7666 | - | - |
2.9349 | 101000 | 2.8829 | - | - |
2.9495 | 101500 | 2.7808 | - | - |
2.9640 | 102000 | 3.0559 | - | - |
2.9785 | 102500 | 2.8531 | - | - |
2.9931 | 103000 | 2.8534 | - | - |
3.0076 | 103500 | 2.3948 | - | - |
3.0221 | 104000 | 1.9878 | - | - |
3.0366 | 104500 | 2.204 | - | - |
3.0512 | 105000 | 2.0951 | 0.6358 | 0.9651 |
3.0657 | 105500 | 2.1723 | - | - |
3.0802 | 106000 | 2.096 | - | - |
3.0948 | 106500 | 2.1398 | - | - |
3.1093 | 107000 | 2.1534 | - | - |
3.1238 | 107500 | 2.0605 | - | - |
3.1383 | 108000 | 1.9515 | - | - |
3.1529 | 108500 | 2.1798 | - | - |
3.1674 | 109000 | 2.1395 | - | - |
3.1819 | 109500 | 2.0357 | - | - |
3.1965 | 110000 | 2.0579 | 0.6275 | 0.9656 |
3.2110 | 110500 | 2.2834 | - | - |
3.2255 | 111000 | 2.1215 | - | - |
3.2401 | 111500 | 2.3135 | - | - |
3.2546 | 112000 | 2.1642 | - | - |
3.2691 | 112500 | 2.1095 | - | - |
3.2836 | 113000 | 2.1022 | - | - |
3.2982 | 113500 | 2.2954 | - | - |
3.3127 | 114000 | 2.2834 | - | - |
3.3272 | 114500 | 2.2489 | - | - |
3.3418 | 115000 | 2.2317 | 0.6205 | 0.9663 |
3.3563 | 115500 | 2.234 | - | - |
3.3708 | 116000 | 2.1769 | - | - |
3.3853 | 116500 | 2.1369 | - | - |
3.3999 | 117000 | 2.1962 | - | - |
3.4144 | 117500 | 2.1586 | - | - |
3.4289 | 118000 | 2.2802 | - | - |
3.4435 | 118500 | 2.2446 | - | - |
3.4580 | 119000 | 2.3673 | - | - |
3.4725 | 119500 | 2.1549 | - | - |
3.4871 | 120000 | 2.2963 | 0.5948 | 0.9672 |
3.5016 | 120500 | 2.331 | - | - |
3.5161 | 121000 | 2.2441 | - | - |
3.5306 | 121500 | 2.0613 | - | - |
3.5452 | 122000 | 2.2732 | - | - |
3.5597 | 122500 | 2.1462 | - | - |
3.5742 | 123000 | 2.2862 | - | - |
3.5888 | 123500 | 2.466 | - | - |
3.6033 | 124000 | 2.1136 | - | - |
3.6178 | 124500 | 2.2851 | - | - |
3.6323 | 125000 | 2.2898 | 0.5887 | 0.9677 |
3.6469 | 125500 | 2.1318 | - | - |
3.6614 | 126000 | 2.2125 | - | - |
3.6759 | 126500 | 2.2985 | - | - |
3.6905 | 127000 | 2.2355 | - | - |
3.7050 | 127500 | 2.1965 | - | - |
3.7195 | 128000 | 2.2711 | - | - |
3.7341 | 128500 | 2.2094 | - | - |
3.7486 | 129000 | 2.1588 | - | - |
3.7631 | 129500 | 2.3413 | - | - |
3.7776 | 130000 | 2.1223 | 0.5878 | 0.9683 |
3.7922 | 130500 | 2.1582 | - | - |
3.8067 | 131000 | 2.3648 | - | - |
3.8212 | 131500 | 2.2182 | - | - |
3.8358 | 132000 | 2.1239 | - | - |
3.8503 | 132500 | 2.0056 | - | - |
3.8648 | 133000 | 2.1289 | - | - |
3.8793 | 133500 | 2.223 | - | - |
3.8939 | 134000 | 2.3067 | - | - |
3.9084 | 134500 | 2.2172 | - | - |
3.9229 | 135000 | 2.2992 | 0.5534 | 0.9699 |
3.9375 | 135500 | 2.1945 | - | - |
3.9520 | 136000 | 2.2532 | - | - |
3.9665 | 136500 | 2.3272 | - | - |
3.9811 | 137000 | 2.2678 | - | - |
3.9956 | 137500 | 2.2451 | - | - |
4.0101 | 138000 | 1.506 | - | - |
4.0246 | 138500 | 1.552 | - | - |
4.0392 | 139000 | 1.5056 | - | - |
4.0537 | 139500 | 1.5867 | - | - |
4.0682 | 140000 | 1.4977 | 0.5668 | 0.9697 |
4.0828 | 140500 | 1.5145 | - | - |
4.0973 | 141000 | 1.571 | - | - |
4.1118 | 141500 | 1.5091 | - | - |
4.1263 | 142000 | 1.5696 | - | - |
4.1409 | 142500 | 1.6053 | - | - |
4.1554 | 143000 | 1.5816 | - | - |
4.1699 | 143500 | 1.6723 | - | - |
4.1845 | 144000 | 1.5638 | - | - |
4.1990 | 144500 | 1.5457 | - | - |
4.2135 | 145000 | 1.5442 | 0.5663 | 0.9698 |
4.2281 | 145500 | 1.6303 | - | - |
4.2426 | 146000 | 1.4715 | - | - |
4.2571 | 146500 | 1.5385 | - | - |
4.2716 | 147000 | 1.6144 | - | - |
4.2862 | 147500 | 1.4881 | - | - |
4.3007 | 148000 | 1.8148 | - | - |
4.3152 | 148500 | 1.5511 | - | - |
4.3298 | 149000 | 1.6536 | - | - |
4.3443 | 149500 | 1.5755 | - | - |
4.3588 | 150000 | 1.6997 | 0.5608 | 0.9702 |
4.3733 | 150500 | 1.6931 | - | - |
4.3879 | 151000 | 1.5777 | - | - |
4.4024 | 151500 | 1.7588 | - | - |
4.4169 | 152000 | 1.5043 | - | - |
4.4315 | 152500 | 1.5527 | - | - |
4.4460 | 153000 | 1.5128 | - | - |
4.4605 | 153500 | 1.5893 | - | - |
4.4751 | 154000 | 1.6465 | - | - |
4.4896 | 154500 | 1.6211 | - | - |
4.5041 | 155000 | 1.5675 | 0.5623 | 0.9704 |
4.5186 | 155500 | 1.752 | - | - |
4.5332 | 156000 | 1.8182 | - | - |
4.5477 | 156500 | 1.5368 | - | - |
4.5622 | 157000 | 1.6635 | - | - |
4.5768 | 157500 | 1.5425 | - | - |
4.5913 | 158000 | 1.5988 | - | - |
4.6058 | 158500 | 1.7011 | - | - |
4.6203 | 159000 | 1.5353 | - | - |
4.6349 | 159500 | 1.625 | - | - |
4.6494 | 160000 | 1.5483 | 0.5426 | 0.9714 |
4.6639 | 160500 | 1.6127 | - | - |
4.6785 | 161000 | 1.6512 | - | - |
4.6930 | 161500 | 1.7213 | - | - |
4.7075 | 162000 | 1.5976 | - | - |
4.7221 | 162500 | 1.5711 | - | - |
4.7366 | 163000 | 1.5911 | - | - |
4.7511 | 163500 | 1.6364 | - | - |
4.7656 | 164000 | 1.6361 | - | - |
4.7802 | 164500 | 1.7027 | - | - |
4.7947 | 165000 | 1.6462 | 0.5388 | 0.9717 |
4.8092 | 165500 | 1.7102 | - | - |
4.8238 | 166000 | 1.6149 | - | - |
4.8383 | 166500 | 1.5491 | - | - |
4.8528 | 167000 | 1.6389 | - | - |
4.8673 | 167500 | 1.5092 | - | - |
4.8819 | 168000 | 1.6771 | - | - |
4.8964 | 168500 | 1.6812 | - | - |
4.9109 | 169000 | 1.6414 | - | - |
4.9255 | 169500 | 1.6066 | - | - |
4.9400 | 170000 | 1.4729 | 0.5236 | 0.9724 |
4.9545 | 170500 | 1.6032 | - | - |
4.9691 | 171000 | 1.6274 | - | - |
4.9836 | 171500 | 1.8478 | - | - |
4.9981 | 172000 | 1.6356 | - | - |
5.0126 | 172500 | 1.1942 | - | - |
5.0272 | 173000 | 1.1838 | - | - |
5.0417 | 173500 | 1.0514 | - | - |
5.0562 | 174000 | 1.0647 | - | - |
5.0708 | 174500 | 1.0718 | - | - |
5.0853 | 175000 | 1.0162 | 0.5385 | 0.9720 |
5.0998 | 175500 | 1.0253 | - | - |
5.1143 | 176000 | 1.115 | - | - |
5.1289 | 176500 | 1.0504 | - | - |
5.1434 | 177000 | 1.1573 | - | - |
5.1579 | 177500 | 1.0937 | - | - |
5.1725 | 178000 | 1.0939 | - | - |
5.1870 | 178500 | 1.0392 | - | - |
5.2015 | 179000 | 1.0852 | - | - |
5.2161 | 179500 | 1.165 | - | - |
5.2306 | 180000 | 1.1048 | 0.5291 | 0.9723 |
5.2451 | 180500 | 1.1814 | - | - |
5.2596 | 181000 | 1.2639 | - | - |
5.2742 | 181500 | 1.1395 | - | - |
5.2887 | 182000 | 1.1452 | - | - |
5.3032 | 182500 | 1.2131 | - | - |
5.3178 | 183000 | 1.236 | - | - |
5.3323 | 183500 | 1.1449 | - | - |
5.3468 | 184000 | 1.1425 | - | - |
5.3613 | 184500 | 1.2328 | - | - |
5.3759 | 185000 | 1.1114 | 0.5252 | 0.9727 |
Framework Versions
- Python: 3.9.21
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nphach/jp-parallel-gloss
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracyself-reported0.990
- Cosine Accuracy Thresholdself-reported0.433
- Cosine F1self-reported0.969
- Cosine F1 Thresholdself-reported0.432
- Cosine Precisionself-reported0.970
- Cosine Recallself-reported0.967
- Cosine Apself-reported0.993
- Cosine Mccself-reported0.962