See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Xenova/tiny-random-Phi3ForCausalLM
bf16: true
chat_template: llama3
dataloader_num_workers: 24
dataset_prepared_path: null
datasets:
- data_files:
- 59716c9c4c29f66a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/59716c9c4c29f66a_train_data.json
type:
field_input: text_encoding
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: nttx/8f68d8b0-2c28-488e-88c7-95dae12ed223
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 4
mlflow_experiment_name: /tmp/59716c9c4c29f66a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e59de8f8-41d9-4aa7-9fa3-2f4cd7c59f6b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e59de8f8-41d9-4aa7-9fa3-2f4cd7c59f6b
warmup_steps: 50
weight_decay: 0.1
xformers_attention: null
8f68d8b0-2c28-488e-88c7-95dae12ed223
This model is a fine-tuned version of Xenova/tiny-random-Phi3ForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.7743
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0017 | 1 | 10.3561 |
9.8747 | 0.2604 | 150 | 9.8336 |
9.8098 | 0.5208 | 300 | 9.7942 |
9.7926 | 0.7812 | 450 | 9.7823 |
9.781 | 1.0417 | 600 | 9.7785 |
9.7784 | 1.3021 | 750 | 9.7763 |
9.7775 | 1.5625 | 900 | 9.7751 |
9.7766 | 1.8229 | 1050 | 9.7747 |
9.7743 | 2.0833 | 1200 | 9.7746 |
9.771 | 2.3438 | 1350 | 9.7743 |
9.7759 | 2.6042 | 1500 | 9.7743 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for nttx/8f68d8b0-2c28-488e-88c7-95dae12ed223
Base model
Xenova/tiny-random-Phi3ForCausalLM