ntxcong's picture
End of training
6d08327 verified
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: hubert-base-common-voice-vi-demo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: vi
          split: None
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 0.3678324522163481

hubert-base-common-voice-vi-demo

This model is a fine-tuned version of facebook/hubert-base-ls960 on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5121
  • Wer: 0.3678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.8731 1.14 500 3.5477 1.0
3.3329 2.28 1000 2.1928 1.0171
1.4603 3.42 1500 0.9074 0.6542
0.9413 4.57 2000 0.7490 0.5568
0.7664 5.71 2500 0.6418 0.5052
0.6719 6.85 3000 0.6240 0.4819
0.6261 7.99 3500 0.6048 0.4657
0.5771 9.13 4000 0.5555 0.4512
0.525 10.27 4500 0.5475 0.4392
0.4948 11.42 5000 0.5619 0.4261
0.4585 12.56 5500 0.5646 0.4280
0.4584 13.7 6000 0.5326 0.4168
0.4157 14.84 6500 0.5126 0.4038
0.4113 15.98 7000 0.5282 0.4004
0.3955 17.12 7500 0.5310 0.3959
0.3658 18.26 8000 0.4936 0.3886
0.3584 19.41 8500 0.5438 0.3895
0.3536 20.55 9000 0.5167 0.3860
0.3665 21.69 9500 0.5194 0.3842
0.3231 22.83 10000 0.5269 0.3866
0.315 23.97 10500 0.5219 0.3768
0.3191 25.11 11000 0.5054 0.3728
0.3264 26.26 11500 0.5068 0.3710
0.3014 27.4 12000 0.5009 0.3694
0.3055 28.54 12500 0.5066 0.3676
0.3098 29.68 13000 0.5121 0.3678

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2