Safetensors
custom_code
mranzinger commited on
Commit
ac4d524
·
verified ·
1 Parent(s): b122da1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -15,13 +15,13 @@ license_link: https://developer.download.nvidia.com/licenses/nvidia-open-model-l
15
  This model performs visual feature extraction.
16
  For instance, RADIO generates image embeddings that can be used by a downstream model to classify images.
17
 
18
- C-RADIOv2 models are available in multiple sizes:
19
  * Base (90M parameters).
20
  * Large (320M parameters).
21
- * Huge (653M parameters).
22
  * Gigantic (1.1B parameters).
23
 
24
- C-RADIOv2 was trained for 1M steps (400k more steps than v1), using inverse frequency sampling for data balancing, and [PHI Standardization](https://arxiv.org/abs/2410.01680) for teacher distribution balancing.
25
 
26
  This model is ready for commercial/non-commercial use.
27
 
@@ -82,7 +82,7 @@ import torch
82
  from PIL import Image
83
  from transformers import AutoModel, CLIPImageProcessor
84
 
85
- hf_repo = "nvidia/C-RADIOv2-L"
86
 
87
  image_processor = CLIPImageProcessor.from_pretrained(hf_repo)
88
  model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True)
@@ -128,17 +128,17 @@ The resulting tensor will have shape `(B,D,H,W)`, as is typically seen with comp
128
 
129
  ## Model Version(s)
130
 
131
- * C-RADIOv2-B (90M parameters).
132
- * C-RADIOv2-L (320M parameters).
133
- * C-RADIOv2-H (653M parameters).
134
- * C-RADIOv2-G (1.8B parameters).
135
 
136
  **Links:**
137
 
138
- * https://huggingface.co/nvidia/C-RADIOv2-B
139
- * https://huggingface.co/nvidia/C-RADIOv2-L
140
- * https://huggingface.co/nvidia/C-RADIOv2-H
141
- * https://huggingface.co/nvidia/C-RADIOv2-g
142
 
143
  # Training and Evaluation Datasets
144
 
 
15
  This model performs visual feature extraction.
16
  For instance, RADIO generates image embeddings that can be used by a downstream model to classify images.
17
 
18
+ C-RADIOv3 models are available in multiple sizes:
19
  * Base (90M parameters).
20
  * Large (320M parameters).
21
+ * Huge (653M parameters). (In training)
22
  * Gigantic (1.1B parameters).
23
 
24
+ C-RADIOv3 was trained for 1M steps (400k more steps than v1), using inverse frequency sampling for data balancing, and [PHI Standardization](https://arxiv.org/abs/2410.01680) for teacher distribution balancing. As well as new techniques for summary distribution matching, and domain generalization.
25
 
26
  This model is ready for commercial/non-commercial use.
27
 
 
82
  from PIL import Image
83
  from transformers import AutoModel, CLIPImageProcessor
84
 
85
+ hf_repo = "nvidia/C-RADIOv3-L"
86
 
87
  image_processor = CLIPImageProcessor.from_pretrained(hf_repo)
88
  model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True)
 
128
 
129
  ## Model Version(s)
130
 
131
+ * C-RADIOv3-B (90M parameters).
132
+ * C-RADIOv3-L (320M parameters).
133
+ * C-RADIOv3-H (653M parameters).
134
+ * C-RADIOv3-g (1.2B parameters).
135
 
136
  **Links:**
137
 
138
+ * https://huggingface.co/nvidia/C-RADIOv3-B
139
+ * https://huggingface.co/nvidia/C-RADIOv3-L
140
+ * https://huggingface.co/nvidia/C-RADIOv3-H
141
+ * https://huggingface.co/nvidia/C-RADIOv3-g
142
 
143
  # Training and Evaluation Datasets
144