Llama-3_3-Nemotron-Super-49B-v1 / transformers_4_44_2__cache_utils.py
Tugrul's picture
Upload 18 files
2af6ba4 verified
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from packaging import version
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import is_torchdynamo_compiling, logging
logger = logging.get_logger(__name__)
class Cache(torch.nn.Module):
"""
Base, abstract class for all caches. The actual data structure is specific to each subclass.
"""
def __init__(self):
super().__init__()
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
cache to be created.
Return:
A tuple containing the updated key and value states.
"""
raise NotImplementedError("Make sure to implement `update` in a subclass.")
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# TODO: deprecate this function in favor of `cache_position`
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states, if there is any."""
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
# Cache without size limit -> all cache is usable
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
# length, we will need to evict part of the cache (and thus not all cache is usable)
max_length = self.get_max_length()
previous_seq_length = self.get_seq_length(layer_idx)
if max_length is not None and previous_seq_length + new_seq_length > max_length:
return max_length - new_seq_length
return previous_seq_length
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
@property
def seen_tokens(self):
logger.warning_once(
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
"model input instead."
)
if hasattr(self, "_seen_tokens"):
return self._seen_tokens
else:
return None
@dataclass
class CacheConfig:
"""
Base class for cache configs
"""
cache_implementation: None
@classmethod
def from_dict(cls, config_dict, **kwargs):
"""
Constructs a CacheConfig instance from a dictionary of parameters.
Args:
config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
**kwargs: Additional keyword arguments to override dictionary values.
Returns:
CacheConfig: Instance of CacheConfig constructed from the dictionary.
"""
config = cls(**config_dict)
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
return config
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_json_file
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save this instance to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file in which this configuration instance's parameters will be saved.
use_diff (`bool`, *optional*, defaults to `True`):
If set to `True`, only the difference between the config instance and the default
`QuantizationConfig()` is serialized to JSON file.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
config_dict = self.to_dict()
json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
writer.write(json_string)
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary. Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
return copy.deepcopy(self.__dict__)
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__iter__
def __iter__(self):
"""allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
for attr, value in copy.deepcopy(self.__dict__).items():
yield attr, value
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__repr__
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
def to_json_string(self):
"""
Serializes this instance to a JSON formatted string.
Returns:
str: JSON formatted string representing the configuration instance.
"""
return json.dumps(self.__dict__, indent=2) + "\n"
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.update
def update(self, **kwargs):
"""
Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
returning all the unused kwargs.
Args:
kwargs (`Dict[str, Any]`):
Dictionary of attributes to tentatively update this class.
Returns:
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
"""
to_remove = []
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
to_remove.append(key)
# Remove all the attributes that were updated, without modifying the input dict
unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
return unused_kwargs
class DynamicCache(Cache):
"""
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]`.
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> past_key_values = DynamicCache()
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
```
"""
def __init__(self) -> None:
super().__init__()
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
"""
if layer_idx < len(self):
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
"""
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
keys and values
"""
for layer_idx in range(len(self)):
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
def __len__(self):
"""
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
to the number of layers in the model.
"""
return len(self.key_cache)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the cache
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states)
self.value_cache.append(value_states)
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# TODO: deprecate this function in favor of `cache_position`
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
return None
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
backward compatibility."""
legacy_cache = ()
for layer_idx in range(len(self)):
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
return legacy_cache
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
backward compatibility."""
cache = cls()
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
key_states, value_states = past_key_values[layer_idx]
cache.update(key_states, value_states, layer_idx)
return cache
def crop(self, max_length: int):
"""Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search."""
# In case it is negative
if max_length < 0:
max_length = self.get_seq_length() - abs(max_length)
if self.get_seq_length() <= max_length:
return
self._seen_tokens = max_length
for idx in range(len(self.key_cache)):
self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]
def batch_split(self, full_batch_size: int, split_size: int) -> List["DynamicCache"]:
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
`_split_model_inputs()` in `generation.utils`"""
out = []
for i in range(0, full_batch_size, split_size):
current_split = DynamicCache()
current_split._seen_tokens = self._seen_tokens
current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
out.append(current_split)
return out
@classmethod
def from_batch_splits(cls, splits: List["DynamicCache"]) -> "DynamicCache":
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
`generation.utils`"""
cache = cls()
for idx in range(len(splits[0])):
layer_keys = torch.cat([current.key_cache[idx] for current in splits], dim=0)
layer_values = torch.cat([current.value_cache[idx] for current in splits], dim=0)
cache.update(layer_keys, layer_values, idx)
return cache
def batch_repeat_interleave(self, repeats: int):
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
for layer_idx in range(len(self)):
self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
def batch_select_indices(self, indices: torch.Tensor):
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
for layer_idx in range(len(self)):
self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
class OffloadedCache(DynamicCache):
"""
A drop-in replacement for DynamicCache that conserves GPU memory at the expense of more CPU memory.
Useful for generating from models with very long context.
In addition to the default CUDA stream, where all forward() computations happen,
this class uses another stream, the prefetch stream, which it creates itself.
Since scheduling of operations on separate streams happens independently, this class uses
the prefetch stream to asynchronously prefetch the KV cache of layer k+1 when layer k is executing.
The movement of the layer k-1 cache to the CPU is handled by the default stream as a simple way to
ensure the eviction is scheduled after all computations on that cache are finished.
"""
def __init__(self) -> None:
if not torch.cuda.is_available():
raise RuntimeError("OffloadedCache can only be used with a GPU")
super().__init__()
self.original_device = []
self.prefetch_stream = torch.cuda.Stream()
self.beam_idx = None # used to delay beam search operations
def prefetch_layer(self, layer_idx: int):
"Starts prefetching the next layer cache"
if layer_idx < len(self):
with torch.cuda.stream(self.prefetch_stream):
# Prefetch next layer tensors to GPU
device = self.original_device[layer_idx]
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)
def evict_previous_layer(self, layer_idx: int):
"Moves the previous layer cache to the CPU"
if len(self) > 2:
# We do it on the default stream so it occurs after all earlier computations on these tensors are done
prev_layer_idx = (layer_idx - 1) % len(self)
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
if layer_idx < len(self):
# Evict the previous layer if necessary
torch.cuda.current_stream().synchronize()
self.evict_previous_layer(layer_idx)
# Load current layer cache to its original device if not already there
original_device = self.original_device[layer_idx]
self.prefetch_stream.synchronize()
key_tensor = self.key_cache[layer_idx]
value_tensor = self.value_cache[layer_idx]
# Now deal with beam search ops which were delayed
if self.beam_idx is not None:
self.beam_idx = self.beam_idx.to(original_device)
key_tensor = key_tensor.index_select(0, self.beam_idx)
value_tensor = value_tensor.index_select(0, self.beam_idx)
# Prefetch the next layer
self.prefetch_layer((layer_idx + 1) % len(self))
return (key_tensor, value_tensor)
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Saves the beam indices and reorders the cache when the tensor is back to its device."""
# We delay this operation until the tensors are back to their original
# device because performing torch.index_select on the CPU is very slow
del self.beam_idx
self.beam_idx = beam_idx.clone()
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the cache
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states)
self.value_cache.append(value_states)
self.original_device.append(key_states.device)
self.evict_previous_layer(layer_idx)
else:
key_tensor, value_tensor = self[layer_idx]
self.key_cache[layer_idx] = torch.cat([key_tensor, key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([value_tensor, value_states], dim=-2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
# According to https://docs.python.org/3/library/exceptions.html#NotImplementedError
# if a method is not supposed to be supported in a subclass we should set it to None
from_legacy_cache = None
to_legacy_cache = None
class SinkCache(Cache):
"""
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]`.
Parameters:
window_length (`int`):
The length of the context window.
num_sink_tokens (`int`):
The number of sink tokens. See the original paper for more information.
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
```
"""
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
super().__init__()
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.window_length = window_length
self.num_sink_tokens = num_sink_tokens
self.cos_sin_rerotation_cache = {}
self._cos_cache = None
self._sin_cache = None
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
@staticmethod
def _rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_key_rotary_pos_emb(
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> torch.Tensor:
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
return rotated_key_states
def _get_rerotation_cos_sin(
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
if key_states.shape[-2] not in self.cos_sin_rerotation_cache:
# Upcast to float32 temporarily for better accuracy
cos = cos.to(torch.float32)
sin = sin.to(torch.float32)
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
self.cos_sin_rerotation_cache[key_states.shape[-2]] = (
rerotation_cos.to(key_states.dtype).unsqueeze(0),
rerotation_sin.to(key_states.dtype).unsqueeze(0),
)
return self.cos_sin_rerotation_cache[key_states.shape[-2]]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# TODO: deprecate this function in favor of `cache_position`
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states."""
return self.window_length
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
rotation as the tokens are shifted.
Return:
A tuple containing the updated key and value states.
"""
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
# with partially rotated position embeddings, like Phi or Persimmon.
sin = cache_kwargs.get("sin")
cos = cache_kwargs.get("cos")
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
using_rope = cos is not None and sin is not None
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the sin/cos cache, which holds sin/cos values for all possible positions
if using_rope and layer_idx == 0:
# BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
# after all RoPE models have a llama-like cache utilization.
if cos.dim() == 2:
self._cos_cache = cos
self._sin_cache = sin
else:
if self._cos_cache is None:
self._cos_cache = cos[0, ...]
self._sin_cache = sin[0, ...]
elif self._cos_cache.shape[0] < self.window_length:
self._cos_cache = torch.cat([self._cos_cache, cos[0, ...]], dim=0)
self._sin_cache = torch.cat([self._sin_cache, sin[0, ...]], dim=0)
# [bsz, num_heads, seq_len, head_dim]
if len(self.key_cache) <= layer_idx:
# Empty cache
self.key_cache.append(key_states)
self.value_cache.append(value_states)
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
# Growing cache
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
else:
# Shifting cache
keys_to_keep = self.key_cache[layer_idx][
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
]
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
if using_rope:
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
key_states, self._cos_cache[: self.window_length], self._sin_cache[: self.window_length]
)
if partial_rotation_size is not None:
keys_to_keep, keys_pass = (
keys_to_keep[..., :partial_rotation_size],
keys_to_keep[..., partial_rotation_size:],
)
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
if partial_rotation_size is not None:
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
values_to_keep = self.value_cache[layer_idx][
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
]
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
class StaticCache(Cache):
"""
Static Cache class to be used with `torch.compile(model)` and `torch.export()`.
Parameters:
config (`PretrainedConfig`):
The configuration file defining the shape-related attributes required to initialize the static cache.
max_batch_size (`int`):
The maximum batch size with which the model will be used.
max_cache_len (`int`):
The maximum sequence length with which the model will be used.
device (`torch.device`):
The device on which the cache should be initialized. Should be the same as the layer.
dtype (*optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
>>> max_generated_length = inputs.input_ids.shape[1] + 10
>>> past_key_values = StaticCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
```
"""
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
super().__init__()
self.max_batch_size = max_batch_size
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
self.dtype = dtype if dtype is not None else torch.float32
self.num_key_value_heads = (
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
)
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
# Note: There will be significant perf decrease if switching to use 5D tensors instead.
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
for idx in range(config.num_hidden_layers):
new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
# Notes:
# 1. `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
# breaks when updating the cache. It can't be used if the cache code is being compiled (but in that case
# it is not needed anyway)
# 2. `torch.export()` requires mutations to be registered as buffers.
if not is_torchdynamo_compiling():
self.register_buffer(f"key_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
self.register_buffer(f"value_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
new_layer_key_cache = getattr(self, f"key_cache_{idx}")
new_layer_value_cache = getattr(self, f"value_cache_{idx}")
torch._dynamo.mark_static_address(new_layer_key_cache)
torch._dynamo.mark_static_address(new_layer_value_cache)
self.key_cache.append(new_layer_key_cache)
self.value_cache.append(new_layer_value_cache)
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
to know how where to write in the cache.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
cache_position = cache_kwargs.get("cache_position")
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
k_out = self.key_cache[layer_idx]
v_out = self.value_cache[layer_idx]
if cache_position is None:
k_out.copy_(key_states)
v_out.copy_(value_states)
else:
# Note: here we use `tensor.index_copy_(dim, index, tensor)` that is equivalent to
# `tensor[:, :, index] = tensor`, but the first one is compile-friendly and it does explicitly an in-place
# operation, that avoids copies and uses less memory.
try:
k_out.index_copy_(2, cache_position, key_states)
v_out.index_copy_(2, cache_position, value_states)
except NotImplementedError:
# The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
k_out[:, :, cache_position] = key_states
v_out[:, :, cache_position] = value_states
return k_out, v_out
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states that were seen by the model."""
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
# limit the check to the first batch member and head dimension.
# TODO: deprecate this function in favor of `cache_position`
# return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
return self._seen_tokens
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states."""
return self.max_cache_len
def reset(self):
self._seen_tokens = 0
"""Resets the cache values while preserving the objects"""
for layer_idx in range(len(self.key_cache)):
# In-place ops prevent breaking the static address
self.key_cache[layer_idx].zero_()
self.value_cache[layer_idx].zero_()
class SlidingWindowCache(StaticCache):
"""
Sliding Window Cache class to be used with `torch.compile` for models like Mistral that support sliding window attention.
Every time when we try to update the cache, we compute the `indices` based on `cache_position >= self.config.sliding_window - 1`,
if true(which means the cache can not hold all the old key value states and new states together because of the sliding window constraint),
we need to do a cycle shift based on `indices` to replace the oldest states by the new key value states passed in.
The `to_shift` is only true once we are above sliding_window. Thus with `sliding_window==64`:
indices = (slicing + to_shift[-1].int()-1) % self.config.sliding_window
tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 0])
We overwrite the cache using these, then we always write at cache_position (clamped to `sliding_window`)
Parameters:
config (`PretrainedConfig`):
The configuration file defining the shape-related attributes required to initialize the static cache.
max_batch_size (`int`):
The maximum batch size with which the model will be used.
max_cache_len (`int`):
The maximum sequence length with which the model will be used.
device (`torch.device`):
The device on which the cache should be initialized. Should be the same as the layer.
dtype (*optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SlidingWindowCache
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
>>> max_generated_length = inputs.input_ids.shape[1] + 10
>>> past_key_values = SlidingWindowCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
```
"""
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
super().__init__(config, max_batch_size, max_cache_len, device, dtype)
if not hasattr(config, "sliding_window") or config.sliding_window is None:
raise ValueError(
"Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
"sliding window attention, please check if there is a `sliding_window` field in the model "
"config and it's not set to None."
)
max_cache_len = min(config.sliding_window, max_cache_len)
super().__init__(
config=config, max_batch_size=max_batch_size, max_cache_len=max_cache_len, device=device, dtype=dtype
)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor]:
cache_position = cache_kwargs.get("cache_position")
k_out = self.key_cache[layer_idx]
v_out = self.value_cache[layer_idx]
# assume this only happens in prefill phase when prompt length > sliding_window_size (= max_cache_len)
if cache_position.shape[0] > self.max_cache_len:
k_out = key_states[:, :, -self.max_cache_len :, :]
v_out = value_states[:, :, -self.max_cache_len :, :]
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
self.key_cache[layer_idx] += k_out
self.value_cache[layer_idx] += v_out
# we should return the whole states instead of k_out, v_out to take the whole prompt
# into consideration when building kv cache instead of just throwing away tokens outside of the window
return key_states, value_states
slicing = torch.ones(self.max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
cache_position = cache_position.clamp(0, self.max_cache_len - 1)
to_shift = cache_position >= self.max_cache_len - 1
indices = (slicing + to_shift[-1].int() - 1) % self.max_cache_len
k_out = k_out[:, :, indices]
v_out = v_out[:, :, indices]
try:
cache_position.to(device=k_out.device)
k_out.index_copy_(2, cache_position, key_states)
v_out.index_copy_(2, cache_position, value_states)
except NotImplementedError:
# The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
k_out[:, :, cache_position] = key_states
v_out[:, :, cache_position] = value_states
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
self.key_cache[layer_idx].zero_()
self.value_cache[layer_idx].zero_()
self.key_cache[layer_idx] += k_out
self.value_cache[layer_idx] += v_out
return k_out, v_out
def get_max_length(self) -> Optional[int]:
# in theory there is no limit because the sliding window size is fixed no matter how long the sentence is
return None
def reset(self):
for layer_idx in range(len(self.key_cache)):
# In-place ops prevent breaking the static address
self.key_cache[layer_idx].zero_()
self.value_cache[layer_idx].zero_()
class EncoderDecoderCache(Cache):
"""
Base, abstract class for all encoder-decoder caches. Can be used to hold combinations of self-attention and
cross-attention caches.
Example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM, DynamicCache, EncoderDecoderCache
>>> model = AutoModelForCausalLM.from_pretrained("openai/whisper-small")
>>> processor = AutoProcessor.from_pretrained("openai/whisper-small")
>>> inputs = processor(audio=YOUR-AUDIO, return_tensors="pt")
>>> # Prepare cache classes for encoder and decoder and pass it to model's forward
>>> self_attention_cache = DynamicCache()
>>> cross_attention_cache = DynamicCache()
>>> past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
```
"""
def __init__(self, self_attention_cache: Cache, cross_attention_cache: Cache):
super().__init__()
self.self_attention_cache = self_attention_cache
self.cross_attention_cache = cross_attention_cache
self.is_updated = {}
for layer_idx in range(len(cross_attention_cache.key_cache)):
self.is_updated[layer_idx] = bool(cross_attention_cache.get_seq_length(layer_idx) > 0)
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
"""
if layer_idx < len(self):
return (
self.self_attention_cache.key_cache[layer_idx],
self.self_attention_cache.value_cache[layer_idx],
self.cross_attention_cache.key_cache[layer_idx],
self.cross_attention_cache.value_cache[layer_idx],
)
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __len__(self):
"""
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
to the number of layers in the model.
"""
return len(self.self_attention_cache)
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
"""Converts the `EncoderDecoderCache` instance into its equivalent in the legacy cache format."""
legacy_cache = ()
if len(self.cross_attention_cache) > 0:
for self_attn, cross_attn in zip(
self.self_attention_cache.to_legacy_cache(), self.cross_attention_cache.to_legacy_cache()
):
legacy_cache += (self_attn + cross_attn,)
else:
legacy_cache = self.self_attention_cache.to_legacy_cache()
return legacy_cache
@classmethod
def from_legacy_cache(
cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
) -> "EncoderDecoderCache":
"""Converts a cache in the legacy cache format into an equivalent `EncoderDecoderCache`."""
cache = cls(self_attention_cache=DynamicCache(), cross_attention_cache=DynamicCache())
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
key_states, value_states = past_key_values[layer_idx][:2]
cache.self_attention_cache.update(key_states, value_states, layer_idx)
if len(past_key_values[layer_idx]) > 2:
key_states, value_states = past_key_values[layer_idx][2:]
cache.cross_attention_cache.update(key_states, value_states, layer_idx)
cache.is_updated[layer_idx] = True
return cache
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
if len(self.self_attention_cache.key_cache) <= layer_idx:
return 0
return (self.self_attention_cache.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
def reset(self):
if hasattr(self.self_attention_cache, "reset"):
self.self_attention_cache.reset()
if hasattr(self.cross_attention_cache, "reset"):
self.cross_attention_cache.reset()
elif not hasattr(self.self_attention_cache, "reset") and not hasattr(self.cross_attention_cache, "reset"):
raise ValueError(
"Neither self nor cross-attention cache have valid `.reset()` methods. `.reset()` should "
"only be called on compatible cache classes, such as `StaticCache` or `SlidingWindowCache`. "
f"Got {self.self_attention_cache.__str__()} for the self attention cache and "
f"{self.cross_attention_cache.__str__()} for the cross attention cache."
)
for layer_idx in self.is_updated:
self.is_updated[layer_idx] = False
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
self.self_attention_cache.reorder_cache(beam_idx)
self.cross_attention_cache.reorder_cache(beam_idx)
def check_dynamic_cache(self, method: str):
if not (
isinstance(self.self_attention_cache, DynamicCache)
and isinstance(self.cross_attention_cache, DynamicCache)
):
raise ValueError(
f"`{method}` is only defined for dynamic cache, got {self.self_attention_cache.__str__()} for the self "
f"attention cache and {self.cross_attention_cache.__str__()} for the cross attention cache."
)
# TODO(gante, sanchit-gandhi): move following functionality into `.generate`
def crop(self, maximum_length: int):
"""Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be
negative to remove `maximum_length` tokens. This is used in assisted decoding and contrastive search."""
self.check_dynamic_cache(self.crop.__name__)
self.self_attention_cache.crop(maximum_length)
def batch_split(self, full_batch_size: int, split_size: int) -> "List[EncoderDecoderCache]":
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
`_split_model_inputs()` in `generation.utils`"""
self.check_dynamic_cache(self.batch_split.__name__)
self_attention_cache = self.self_attention_cache.batch_split(full_batch_size, split_size)
cross_attention_cache = self.cross_attention_cache.batch_split(full_batch_size, split_size)
out = []
for self_attn, cross_attn in zip(self_attention_cache, cross_attention_cache):
out.append(EncoderDecoderCache(self_attn, cross_attn))
return out
@classmethod
def from_batch_splits(cls, splits: List["EncoderDecoderCache"]) -> "EncoderDecoderCache":
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
`generation.utils`"""
self_attention_cache = DynamicCache()
cross_attention_cache = DynamicCache()
for idx in range(len(splits[0])):
layer_keys = torch.cat([current.self_attention_cache.key_cache[idx] for current in splits], dim=0)
layer_values = torch.cat([current.self_attention_cache.value_cache[idx] for current in splits], dim=0)
self_attention_cache.update(layer_keys, layer_values, idx)
layer_keys = torch.cat([current.cross_attention_cache.key_cache[idx] for current in splits], dim=0)
layer_values = torch.cat([current.cross_attention_cache.value_cache[idx] for current in splits], dim=0)
cross_attention_cache.update(layer_keys, layer_values, idx)
return cls(self_attention_cache, cross_attention_cache)
def batch_repeat_interleave(self, repeats: int):
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
self.check_dynamic_cache(self.batch_repeat_interleave.__name__)
self.self_attention_cache.batch_repeat_interleave(repeats)
self.cross_attention_cache.batch_repeat_interleave(repeats)
def batch_select_indices(self, indices: torch.Tensor):
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
self.check_dynamic_cache(self.batch_select_indices.__name__)
self.self_attention_cache.batch_select_indices(indices)
self.cross_attention_cache.batch_select_indices(indices)
class HybridCache(Cache):
"""
Hybrid Cache class to be used with `torch.compile` for Gemma2 models that alternate between a local sliding window attention
and global attention in every other layer. Under the hood, Hybrid Cache leverages ["SlidingWindowCache"] for sliding window attention
and ["StaticCache"] for global attention. For more information, see the documentation of each subcomponeent cache class.
Parameters:
config (`PretrainedConfig):
The configuration file defining the shape-related attributes required to initialize the static cache.
max_batch_size (`int`):
The maximum batch size with which the model will be used.
max_cache_len (`int`):
The maximum sequence length with which the model will be used.
device (`torch.device`, *optional*, defaults to `"cpu"`):
The device on which the cache should be initialized. Should be the same as the layer.
dtype (*optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
>>> model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
>>> max_generated_length = inputs.input_ids.shape[1] + 10
>>> past_key_values = HybridCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
```
"""
def __init__(self, config: PretrainedConfig, max_batch_size, max_cache_len, device="cpu", dtype=None) -> None:
super().__init__()
if not hasattr(config, "sliding_window") or config.sliding_window is None:
raise ValueError(
"Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
"sliding window attention, please check if there is a `sliding_window` field in the model "
"config and it's not set to None."
)
self.max_cache_len = max_cache_len
self.max_batch_size = max_batch_size
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
self.dtype = dtype if dtype is not None else torch.float32
self.num_key_value_heads = (
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
)
self.is_sliding = torch.tensor(
[not bool(i % 2) for i in range(config.num_hidden_layers)], dtype=torch.bool, device=device
)
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
global_cache_shape = (max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
sliding_cache_shape = (
max_batch_size,
self.num_key_value_heads,
min(config.sliding_window, max_cache_len),
self.head_dim,
)
for i in range(config.num_hidden_layers):
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
# breaks when updating the cache.
cache_shape = global_cache_shape if not self.is_sliding[i] else sliding_cache_shape
new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
torch._dynamo.mark_static_address(new_layer_key_cache)
torch._dynamo.mark_static_address(new_layer_value_cache)
self.key_cache.append(new_layer_key_cache)
self.value_cache.append(new_layer_value_cache)
def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
if cache_position.shape[0] > max_cache_len:
k_out = key_states[:, :, -max_cache_len:, :]
v_out = value_states[:, :, -max_cache_len:, :]
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
self.key_cache[layer_idx] += k_out
self.value_cache[layer_idx] += v_out
# we should return the whole states instead of k_out, v_out to take the whole prompt
# into consideration when building kv cache instead of just throwing away tokens outside of the window
return key_states, value_states
slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
cache_position = cache_position.clamp(0, max_cache_len - 1)
to_shift = cache_position >= max_cache_len - 1
indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
k_out = k_out[:, :, indices]
v_out = v_out[:, :, indices]
k_out[:, :, cache_position] = key_states
v_out[:, :, cache_position] = value_states
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
self.key_cache[layer_idx].zero_()
self.value_cache[layer_idx].zero_()
self.key_cache[layer_idx] += k_out
self.value_cache[layer_idx] += v_out
return k_out, v_out
def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
k_out[:, :, cache_position] = key_states
v_out[:, :, cache_position] = value_states
self.key_cache[layer_idx] = k_out
self.value_cache[layer_idx] = v_out
return k_out, v_out
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor]:
cache_position = cache_kwargs.get("cache_position")
sliding_window = cache_kwargs.get("sliding_window")
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
k_out = self.key_cache[layer_idx]
v_out = self.value_cache[layer_idx]
if sliding_window:
update_fn = self._sliding_update
else:
update_fn = self._static_update
return update_fn(
cache_position,
layer_idx,
key_states,
value_states,
k_out,
v_out,
k_out.shape[2],
)
def get_max_length(self) -> Optional[int]:
# in theory there is no limit because the sliding window size is fixed
# no matter how long the sentence is
return self.max_cache_len
def get_seq_length(self, layer_idx: Optional[int] = 0):
return None
def reset(self):
"""Resets the cache values while preserving the objects"""
for layer_idx in range(len(self.key_cache)):
# In-place ops prevent breaking the static address
self.key_cache[layer_idx].zero_()
self.value_cache[layer_idx].zero_()
class MambaCache:
"""
Cache for mamba model which does not have attention mechanism and key value states.
Arguments:
config (`PretrainedConfig):
The configuration file defining the shape-related attributes required to initialize the static cache.
max_batch_size (`int`):
The maximum batch size with which the model will be used.
dtype (*optional*, defaults to `torch.float16`):
The default `dtype` to use when initializing the layer.
device (`torch.device`, *optional*):
The device on which the cache should be initialized. Should be the same as the layer.
Attributes:
dtype: (`torch.dtype`):
The default `dtype` used to initializing the cache.
intermediate_size: (`int`):
Model's intermediate_size taken from config.
ssm_state_size: (`int`):
Model's state_size taken from config.
conv_kernel_size: (`int`):
Model's convolution kernel size taken from config
conv_states: (`torch.Tensor`):
A tensor of shape `[layer_idx, batch_size, intermediate_size, conv_kernel_size]` that holds convolutional states.
ssm_states: (`torch.Tensor`):
A tensor of shape `[layer_idx, batch_size, intermediate_size, ssm_state_size]` that holds ssm states
Example:
```python
>>> from transformers import AutoTokenizer, MambaForCausalLM, MambaCache
>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
>>> inputs = tokenizer(text="My name is Mamba", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> past_key_values = MambaCache(config=model.config, max_batch_size=1, device=model.device, dtype=model.dtype)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> past_kv = outputs.past_key_values
```
"""
def __init__(
self,
config: PretrainedConfig,
max_batch_size: int,
dtype: torch.dtype = torch.float16,
device: Optional[str] = None,
**kwargs,
):
self.dtype = dtype
self.max_batch_size = max_batch_size
self.intermediate_size = config.intermediate_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.conv_states: torch.Tensor = torch.zeros(
config.num_hidden_layers,
self.max_batch_size,
self.intermediate_size,
self.conv_kernel_size,
device=device,
dtype=dtype,
)
self.ssm_states: torch.Tensor = torch.zeros(
config.num_hidden_layers,
self.max_batch_size,
self.intermediate_size,
self.ssm_state_size,
device=device,
dtype=dtype,
)
torch._dynamo.mark_static_address(self.conv_states)
torch._dynamo.mark_static_address(self.ssm_states)
def update_conv_state(
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
) -> torch.Tensor:
conv_state = self.conv_states[layer_idx]
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
conv_state = conv_state.roll(shifts=-1, dims=-1)
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
self.conv_states[layer_idx].zero_()
self.conv_states[layer_idx] += conv_state
return self.conv_states[layer_idx]
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
return self.ssm_states[layer_idx]
def reset(self):
self.conv_states.zero_()
self.ssm_states.zero_()