|
--- |
|
license: cc-by-nc-4.0 |
|
language: |
|
- ace |
|
- acm |
|
- acq |
|
- aeb |
|
- af |
|
- ajp |
|
- ak |
|
- am |
|
- apc |
|
- ar |
|
- ars |
|
- ary |
|
- arz |
|
- as |
|
- ast |
|
- awa |
|
- ay |
|
- azb |
|
- azj |
|
- ba |
|
- bm |
|
- ban |
|
- be |
|
- bem |
|
- bn |
|
- bho |
|
- bjn |
|
- bo |
|
- bs |
|
- bug |
|
- bg |
|
- ca |
|
- ceb |
|
- cs |
|
- cjk |
|
- ckb |
|
- crh |
|
- cy |
|
- da |
|
- de |
|
- dik |
|
- dyu |
|
- dz |
|
- el |
|
- en |
|
- eo |
|
- et |
|
- eu |
|
- ee |
|
- fo |
|
- fa |
|
- fj |
|
- fi |
|
- fon |
|
- fr |
|
- fur |
|
- ff |
|
- gd |
|
- ga |
|
- gl |
|
- gn |
|
- gu |
|
- ht |
|
- ha |
|
- he |
|
- hi |
|
- hne |
|
- hr |
|
- hu |
|
- hy |
|
- ig |
|
- ilo |
|
- id |
|
- is |
|
- it |
|
- jv |
|
- ja |
|
- kab |
|
- kac |
|
- kam |
|
- kn |
|
- ks |
|
- ka |
|
- kr |
|
- kk |
|
- kbp |
|
- kea |
|
- km |
|
- ki |
|
- rw |
|
- ky |
|
- kmb |
|
- kg |
|
- ko |
|
- kmr |
|
- lo |
|
- lv |
|
- lij |
|
- li |
|
- ln |
|
- lt |
|
- lmo |
|
- ltg |
|
- lb |
|
- lua |
|
- lg |
|
- luo |
|
- lus |
|
- mag |
|
- mai |
|
- ml |
|
- mr |
|
- min |
|
- mk |
|
- plt |
|
- mt |
|
- mni |
|
- mn |
|
- mos |
|
- mi |
|
- ms |
|
- my |
|
- nl |
|
- nn |
|
- nb |
|
- ne |
|
- nso |
|
- nus |
|
- ny |
|
- oc |
|
- gaz |
|
- ory |
|
- pag |
|
- pa |
|
- pap |
|
- pl |
|
- pt |
|
- prs |
|
- pbt |
|
- qu |
|
- ro |
|
- rn |
|
- ru |
|
- sg |
|
- sa |
|
- sat |
|
- scn |
|
- shn |
|
- si |
|
- sk |
|
- sl |
|
- sm |
|
- sn |
|
- sd |
|
- so |
|
- st |
|
- es |
|
- als |
|
- sc |
|
- sr |
|
- ss |
|
- su |
|
- sv |
|
- sw |
|
- szl |
|
- ta |
|
- tt |
|
- te |
|
- tg |
|
- tl |
|
- th |
|
- ti |
|
- taq |
|
- tpi |
|
- tn |
|
- ts |
|
- tk |
|
- tum |
|
- tr |
|
- tw |
|
- tzm |
|
- ug |
|
- uk |
|
- umb |
|
- ur |
|
- uz |
|
- vec |
|
- vi |
|
- war |
|
- wo |
|
- xh |
|
- yi |
|
- yo |
|
- yue |
|
- zh |
|
- zu |
|
language_details: >- |
|
ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, |
|
aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, |
|
asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, |
|
bam_Latn, ban_Latn, bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, |
|
bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, |
|
cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, |
|
dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, |
|
ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, |
|
fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, |
|
hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, |
|
hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, |
|
jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, |
|
kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, |
|
kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, |
|
lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, |
|
ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, |
|
mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, |
|
mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, |
|
nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, |
|
gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, |
|
prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, |
|
san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, |
|
smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, |
|
srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, |
|
tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, |
|
taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, |
|
tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, |
|
uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, |
|
yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# BLASER Ref (Ported) |
|
|
|
This is a **ported version of the BLASER quality estimation (REF) model** originally developed in [BLASER: Bilingual Language-Agnostic Sentence Representations](https://huggingface.co/facebook/blaser-2.0-ref). |
|
|
|
- **Ported to Hugging Face Transformers**: no dependency on Fairseq. |
|
- **Uses embeddings from the ported SONAR 200 multilingual text encoder** ([cointegrated/SONAR_200_text_encoder](https://huggingface.co/cointegrated/SONAR_200_text_encoder)). |
|
- **Supports the same 202 languages** as SONAR / NLLB-200. |
|
- **Outputs BLASER scores on a 1–5 scale** for a source–MT–REF triplet. |
|
|
|
> ⚠️ This is **not the original implementation**. Attribution goes to the original BLASER authors. |
|
|
|
--- |
|
|
|
## How to compute Ref scores |
|
|
|
```python |
|
# !pip install transformers sentencepiece torch -q |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder |
|
|
|
# 1. Load SONAR encoder |
|
sonar_model_name = "cointegrated/SONAR_200_text_encoder" |
|
encoder = M2M100Encoder.from_pretrained(sonar_model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(sonar_model_name) |
|
|
|
def encode_mean_pool(texts, tokenizer, encoder, lang='eng_Latn', norm=False): |
|
tokenizer.src_lang = lang |
|
with torch.inference_mode(): |
|
batch = tokenizer(texts, return_tensors='pt', padding=True) |
|
seq_embs = encoder(**batch).last_hidden_state |
|
mask = batch.attention_mask |
|
mean_emb = (seq_embs * mask.unsqueeze(-1)).sum(1) / mask.unsqueeze(-1).sum(1) |
|
if norm: |
|
mean_emb = torch.nn.functional.normalize(mean_emb) |
|
return mean_emb |
|
|
|
# Example sentences |
|
src_sentences = ["Le chat s'assit sur le tapis."] |
|
mt_sentences = ["The cat sat down on the carpet."] # Example MT output |
|
ref_sentences = ["The cat sat on the mat."] # Example reference translation |
|
|
|
# Encode source and MT sentences |
|
src_embs = encode_mean_pool(src_sentences, tokenizer, encoder, lang="fra_Latn") |
|
mt_embs = encode_mean_pool(mt_sentences, tokenizer, encoder, lang="eng_Latn") |
|
ref_embs = encode_mean_pool(ref_sentences, tokenizer, encoder, lang="eng_Latn") |
|
|
|
# 2. Load BLASER Ref model (ported) |
|
ref_model_name = "oist/blaser-2.0-ref-ported" |
|
ref_model = AutoModel.from_pretrained(qe_model_name, trust_remote_code=True) |
|
ref_model.eval() # set to evaluation mode |
|
|
|
# 3. Compute Ref scores |
|
with torch.inference_mode(): |
|
ref_scores = ref_model(src_embs, mt_embs, ref_embs) # expects source and MT embeddings, and ref embeddings |
|
print("Blaser score shape:", ref_scores.shape) |
|
print("Blaser scores:", ref_scores[0]) |