ongkn's picture
End of training
1af051b verified
|
raw
history blame
2.54 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: attraction-classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8114406779661016

attraction-classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4385
  • Accuracy: 0.8114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 69
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.65 1.5 25 0.5581 0.7394
0.4953 3.01 50 0.4969 0.7542
0.4541 4.51 75 0.4627 0.7775
0.38 6.02 100 0.4566 0.7839
0.3357 7.52 125 0.4352 0.8072
0.307 9.02 150 0.4656 0.7881
0.2701 10.53 175 0.4294 0.8093
0.244 12.03 200 0.4797 0.8114
0.2294 13.53 225 0.4235 0.8263
0.2017 15.04 250 0.4744 0.8157
0.199 16.54 275 0.4450 0.8136
0.1793 18.05 300 0.4385 0.8114

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.0