git-large-r-coco-IDB_ADv1_COCOv6-r

This model is a fine-tuned version of microsoft/git-large-r-coco on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0568
  • Meteor Score: {'meteor': 0.7213608939819159}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 15
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Meteor Score
91.9877 1.4815 5 11.4608 {'meteor': 0.046723581008416726}
84.6168 2.9630 10 9.8170 {'meteor': 0.043886991456607405}
77.4092 4.4444 15 9.1821 {'meteor': 0.06849055586443556}
71.3318 5.9259 20 8.3193 {'meteor': 0.061564918769236095}
65.2006 7.4074 25 7.6103 {'meteor': 0.0754162033563066}
60.1084 8.8889 30 7.0968 {'meteor': 0.1078676449812926}
56.3449 10.3704 35 6.6624 {'meteor': 0.16409628582839803}
53.0194 11.8519 40 6.2707 {'meteor': 0.17640875038111917}
49.885 13.3333 45 5.9076 {'meteor': 0.20852663016362413}
47.1535 14.8148 50 5.5612 {'meteor': 0.21135425345585648}
44.3251 16.2963 55 5.2211 {'meteor': 0.25163567787871793}
41.4631 17.7778 60 4.8845 {'meteor': 0.36102118410159373}
38.8862 19.2593 65 4.5516 {'meteor': 0.40677731182809435}
36.2603 20.7407 70 4.2228 {'meteor': 0.42841296399868456}
33.5914 22.2222 75 3.8960 {'meteor': 0.4442706614076698}
31.0193 23.7037 80 3.5716 {'meteor': 0.44790686728484286}
28.4252 25.1852 85 3.2513 {'meteor': 0.4634788207419503}
25.927 26.6667 90 2.9379 {'meteor': 0.46009853575600396}
23.4406 28.1481 95 2.6312 {'meteor': 0.4702576268818571}
21.0641 29.6296 100 2.3319 {'meteor': 0.4724561426359612}
18.6236 31.1111 105 2.0445 {'meteor': 0.4759864205500001}
16.4033 32.5926 110 1.7706 {'meteor': 0.4905426072931855}
14.1917 34.0741 115 1.5119 {'meteor': 0.48899836960829424}
12.1305 35.5556 120 1.2729 {'meteor': 0.5241780827869041}
10.2674 37.0370 125 1.0567 {'meteor': 0.5097833762351499}
8.5593 38.5185 130 0.8637 {'meteor': 0.4997929450485001}
7.013 40.0 135 0.6974 {'meteor': 0.5105554674131357}
5.666 41.4815 140 0.5584 {'meteor': 0.5152670866288012}
4.5962 42.9630 145 0.4444 {'meteor': 0.5396604542862918}
3.6125 44.4444 150 0.3520 {'meteor': 0.5617093146804203}
2.9293 45.9259 155 0.2796 {'meteor': 0.5886004681488384}
2.259 47.4074 160 0.2219 {'meteor': 0.553105842439049}
1.8309 48.8889 165 0.1785 {'meteor': 0.5814978557330325}
1.4494 50.3704 170 0.1458 {'meteor': 0.6231566268972263}
1.1158 51.8519 175 0.1248 {'meteor': 0.6099620120504717}
0.9661 53.3333 180 0.1060 {'meteor': 0.6546451210304227}
0.7271 54.8148 185 0.0880 {'meteor': 0.6338177371529071}
0.6177 56.2963 190 0.0775 {'meteor': 0.6518057184133086}
0.4962 57.7778 195 0.0698 {'meteor': 0.6193332334649128}
0.4415 59.2593 200 0.0652 {'meteor': 0.7079004093008636}
0.3629 60.7407 205 0.0632 {'meteor': 0.6940804620155375}
0.3219 62.2222 210 0.0595 {'meteor': 0.6912091264820688}
0.2679 63.7037 215 0.0545 {'meteor': 0.7030913652832623}
0.234 65.1852 220 0.0537 {'meteor': 0.6676437817167338}
0.2026 66.6667 225 0.0534 {'meteor': 0.6811270764539213}
0.1843 68.1481 230 0.0515 {'meteor': 0.6779206905106651}
0.1662 69.6296 235 0.0511 {'meteor': 0.715690856984691}
0.1432 71.1111 240 0.0502 {'meteor': 0.7156957872649886}
0.1331 72.5926 245 0.0495 {'meteor': 0.6543089583737782}
0.1156 74.0741 250 0.0494 {'meteor': 0.6594307549550437}
0.1021 75.5556 255 0.0485 {'meteor': 0.6576803078677578}
0.092 77.0370 260 0.0487 {'meteor': 0.6811188428011016}
0.0809 78.5185 265 0.0498 {'meteor': 0.7035441241921582}
0.0723 80.0 270 0.0506 {'meteor': 0.7038905922785134}
0.0649 81.4815 275 0.0502 {'meteor': 0.7421547726024114}
0.0608 82.9630 280 0.0507 {'meteor': 0.730981066765409}
0.0491 84.4444 285 0.0518 {'meteor': 0.7443890531705978}
0.0458 85.9259 290 0.0534 {'meteor': 0.7176754184986865}
0.0388 87.4074 295 0.0523 {'meteor': 0.7176410382626139}
0.0334 88.8889 300 0.0534 {'meteor': 0.7026151957465668}
0.026 90.3704 305 0.0520 {'meteor': 0.7362294347533668}
0.0241 91.8519 310 0.0531 {'meteor': 0.7236102999038347}
0.0211 93.3333 315 0.0542 {'meteor': 0.7152270797326922}
0.0182 94.8148 320 0.0547 {'meteor': 0.7175103144573044}
0.0175 96.2963 325 0.0547 {'meteor': 0.7140333983909092}
0.0158 97.7778 330 0.0558 {'meteor': 0.7230279458318826}
0.0153 99.2593 335 0.0560 {'meteor': 0.7216506562988318}
0.0133 100.7407 340 0.0558 {'meteor': 0.7089953285495003}
0.0137 102.2222 345 0.0557 {'meteor': 0.7050918755935003}
0.0127 103.7037 350 0.0561 {'meteor': 0.7140423279140877}
0.0118 105.1852 355 0.0563 {'meteor': 0.716693515553002}
0.0121 106.6667 360 0.0559 {'meteor': 0.7213321747823379}
0.0115 108.1481 365 0.0559 {'meteor': 0.7244157912903824}
0.0107 109.6296 370 0.0559 {'meteor': 0.7258048026400388}
0.0115 111.1111 375 0.0562 {'meteor': 0.7249978244263323}
0.0107 112.5926 380 0.0564 {'meteor': 0.7261256725269803}
0.0103 114.0741 385 0.0565 {'meteor': 0.7222910388476055}
0.0102 115.5556 390 0.0567 {'meteor': 0.7209011950646473}
0.0099 117.0370 395 0.0567 {'meteor': 0.7221559565497234}
0.0101 118.5185 400 0.0567 {'meteor': 0.7234189947956161}
0.0096 120.0 405 0.0567 {'meteor': 0.7231619412067093}
0.0097 121.4815 410 0.0567 {'meteor': 0.7224063072061223}
0.0103 122.9630 415 0.0567 {'meteor': 0.7209850209026843}
0.0101 124.4444 420 0.0567 {'meteor': 0.7208576227726795}
0.0095 125.9259 425 0.0567 {'meteor': 0.7215621466948617}
0.0093 127.4074 430 0.0568 {'meteor': 0.7221874032851583}
0.01 128.8889 435 0.0568 {'meteor': 0.7207488272286875}
0.0097 130.3704 440 0.0568 {'meteor': 0.7213694074696705}
0.0096 131.8519 445 0.0568 {'meteor': 0.7213044564985146}
0.0099 133.3333 450 0.0568 {'meteor': 0.7213608939819159}

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.20.2
Downloads last month
112
Safetensors
Model size
394M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ooliverz/git-large-r-coco-IDB_ADv1_COCOv6-r

Finetuned
(8)
this model