Add library_name, pipeline tag and paper link
#5
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -6,18 +6,21 @@ tags:
|
|
6 |
- MiniCPM
|
7 |
- ModelBest
|
8 |
- THUNLP
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
|
12 |
<div align="center">
|
13 |
<h1>
|
14 |
MiniCPM
|
15 |
</h1>
|
16 |
</div>
|
17 |
|
|
|
|
|
18 |
<p align="center">
|
19 |
<a href="https://shengdinghu.notion.site/MiniCPM-c805a17c5c8046398914e47f0542095a?pvs=4" target="_blank">MiniCPM 技术报告</a><a href="https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20?pvs=4" target="_blank"> Technical Report</a> |
|
20 |
-
<a href="https://github.com/OpenBMB/OmniLMM
|
21 |
<a href="https://luca.cn/" target="_blank">CPM-C 千亿模型试用 ~100B Model Trial </a>
|
22 |
</p>
|
23 |
|
@@ -36,7 +39,7 @@ MiniCPM 是面壁与清华大学自然语言处理实验室共同开源的系列
|
|
36 |
- 基于MLC-LLM、LLMFarm开发的MiniCPM手机端程序,**文本及多模态模型均可在手机端进行推理。**
|
37 |
|
38 |
|
39 |
-
MiniCPM is an End-Size LLM developed by ModelBest Inc. and TsinghuaNLP, with only 2.4B parameters excluding embeddings
|
40 |
|
41 |
- MiniCPM has very close performance compared with Mistral-7B on open-sourced general benchmarks with better ability on Chinese, Mathmetics and Coding after SFT. The overall performance exceeds Llama2-13B, MPT-30B, Falcon-40B, etc.
|
42 |
- After DPO, MiniCPM outperforms Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, Zephyr-7B-alpha, etc. on MTBench.
|
@@ -148,4 +151,4 @@ print(responds)
|
|
148 |
booktitle={OpenBMB Blog},
|
149 |
year={2024}
|
150 |
}
|
151 |
-
```
|
|
|
6 |
- MiniCPM
|
7 |
- ModelBest
|
8 |
- THUNLP
|
9 |
+
library_name: transformers
|
10 |
+
pipeline_tag: text-generation
|
11 |
---
|
12 |
|
|
|
13 |
<div align="center">
|
14 |
<h1>
|
15 |
MiniCPM
|
16 |
</h1>
|
17 |
</div>
|
18 |
|
19 |
+
This repository contains the model of the paper [MiniCPM4: Ultra-Efficient LLMs on End Devices](https://huggingface.co/papers/2506.07900).
|
20 |
+
|
21 |
<p align="center">
|
22 |
<a href="https://shengdinghu.notion.site/MiniCPM-c805a17c5c8046398914e47f0542095a?pvs=4" target="_blank">MiniCPM 技术报告</a><a href="https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20?pvs=4" target="_blank"> Technical Report</a> |
|
23 |
+
<a href="https://github.com/OpenBMB/OmniLMM/\" target="_blank">OmniLMM 多模态模型 Multi-modal Model</a> |
|
24 |
<a href="https://luca.cn/" target="_blank">CPM-C 千亿模型试用 ~100B Model Trial </a>
|
25 |
</p>
|
26 |
|
|
|
39 |
- 基于MLC-LLM、LLMFarm开发的MiniCPM手机端程序,**文本及多模态模型均可在手机端进行推理。**
|
40 |
|
41 |
|
42 |
+
MiniCPM is an End-Size LLM developed by ModelBest Inc. and TsinghuaNLP, with only 2.4B parameters excluding embeddings。
|
43 |
|
44 |
- MiniCPM has very close performance compared with Mistral-7B on open-sourced general benchmarks with better ability on Chinese, Mathmetics and Coding after SFT. The overall performance exceeds Llama2-13B, MPT-30B, Falcon-40B, etc.
|
45 |
- After DPO, MiniCPM outperforms Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, Zephyr-7B-alpha, etc. on MTBench.
|
|
|
151 |
booktitle={OpenBMB Blog},
|
152 |
year={2024}
|
153 |
}
|
154 |
+
```
|