AI & ML interests

None defined yet.

Recent Activity

C4AI-Community's activity

prithivMLmods 
posted an update 1 day ago
view post
Post
1280
Dropping Downstream tasks using newly initialized parameters and weights ([classifier.bias & weights]) support domain-specific 𝗶𝗺𝗮𝗴𝗲 𝗰𝗹𝗮𝘀𝘀𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻. Based on siglip2-base-patch16-224 and DomainNet (single-domain, multi-source adaptation), with Fashion-MNIST for experimental testing. 🧤☄️

Fashion-Mnist : prithivMLmods/Fashion-Mnist-SigLIP2
Multisource-121 : prithivMLmods/Multisource-121-DomainNet
Painting-126 : prithivMLmods/Painting-126-DomainNet
Sketch-126 : prithivMLmods/Sketch-126-DomainNet
Clipart-126 : prithivMLmods/Clipart-126-DomainNet

Models are trained with different parameter settings for experimental purposes only, with the intent of further development. Refer to the model page below for instructions on running it with Transformers 🤗.

Collection : prithivMLmods/domainnet-0324-67e0e3c934c03cc40c6c8782

Citations : SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features https://arxiv.org/pdf/2502.14786 & Moment Matching for Multi-Source Domain Adaptation : https://arxiv.org/pdf/1812.01754

louisbrulenaudet 
posted an update 2 days ago
view post
Post
674
I’ve just released logfire-callback on PyPI, designed to facilitate monitoring of Hugging Face Transformer training loops using Pydantic Logfire 🤗

The callback will automatically log training start with configuration parameters, periodic metrics and training completion ⏱️

Install the package using pip:
pip install logfire-callback

First, ensure you have a Logfire API token and set it as an environment variable:
export LOGFIRE_TOKEN=your_logfire_token

Then use the callback in your training code:
from transformers import Trainer, TrainingArguments
from logfire_callback import LogfireCallback

# Initialize your model, dataset, etc.

training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    # ... other training arguments
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    callbacks=[LogfireCallback()]  # Add the Logfire callback here
)

trainer.train()

If you have any feedback, please reach out at @louisbrulenaudet
prithivMLmods 
posted an update 5 days ago
view post
Post
2170
Play with Orpheus TTS, a Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been fine-tuned to deliver human-level speech synthesis 🔥🗣️

👉GitHub [ Demo ] : https://github.com/PRITHIVSAKTHIUR/Orpheus-TTS-Edge

Demo supporting both text-to-speech and text-to-llm responses in speech.

> voice: tara, dan, emma, josh
> emotion: <laugh>, <chuckle>, <sigh>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.

🥠Orpheus-3b-0.1-ft
Model Page: canopylabs/orpheus-3b-0.1-ft

🥠Orpheus-3b-0.1-ft
Colab Inference Notebook: https://colab.research.google.com/drive/1KhXT56UePPUHhqitJNUxq63k-pQomz3N?usp=sharing

🥠Finetune [ orpheus-3b-0.1-pretrained ]
Resource: https://github.com/canopyai/Orpheus-TTS/tree/main/finetune

🥠Model-releases:
https://canopylabs.ai/model-releases
  • 1 reply
·
prithivMLmods 
posted an update 11 days ago
view post
Post
920
Hey Guys! One Small Announcement 🤗
Stranger Zone now accepts LoRA requests!

✍️Request : strangerzonehf/Request-LoRA [ or ] strangerzonehf/Request-LoRA#1

Page : https://huggingface.co/strangerzonehf

Describe the artistic properties by posting sample images or links to similar images in the request discussion. If the adapters you're asking for are truly creative and safe for work, I'll train and upload the LoRA to the Stranger Zone repo!

Thank you!
prithivMLmods 
posted an update 13 days ago
view post
Post
2471
Gemma-3-4B : Image and Video Inference 🖼️🎥

🧤Space: prithivMLmods/Gemma-3-Multimodal
🥠Git : https://github.com/PRITHIVSAKTHIUR/Gemma-3-Multimodal

@gemma3 : {Tag + Space_+ 'prompt'}
@video-infer : {Tag + Space_+ 'prompt'}

+ Gemma3-4B : google/gemma-3-4b-it
+ By default, it runs : prithivMLmods/Qwen2-VL-OCR-2B-Instruct

Gemma 3 Technical Report : https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf
  • 1 reply
·
not-lain 
posted an update 13 days ago
prithivMLmods 
posted an update 14 days ago
Tonic 
posted an update 18 days ago
view post
Post
1160
🙋🏻‍♂️Hey there folks,

Did you know that you can use ModernBERT to detect model hallucinations ?

Check out the Demo : Tonic/hallucination-test

See here for Medical Context Demo : MultiTransformer/tonic-discharge-guard

check out the model from KRLabs : KRLabsOrg/lettucedect-large-modernbert-en-v1

and the library they kindly open sourced for it : https://github.com/KRLabsOrg/LettuceDetect

👆🏻if you like this topic please contribute code upstream 🚀

  • 2 replies
·
Tonic 
posted an update 20 days ago
view post
Post
701
Powered by KRLabsOrg/lettucedect-large-modernbert-en-v1 from KRLabsOrg.

Detect hallucinations in answers based on context and questions using ModernBERT with 8192-token context support!

### Model Details
- **Model Name**: [lettucedect-large-modernbert-en-v1]( KRLabsOrg/lettucedect-large-modernbert-en-v1)
- **Organization**: [KRLabsOrg](https://huggingface.co/KRLabsOrg)
- **Github**: [https://github.com/KRLabsOrg/LettuceDetect](https://github.com/KRLabsOrg/LettuceDetect)
- **Architecture**: ModernBERT (Large) with extended context support up to 8192 tokens
- **Task**: Token Classification / Hallucination Detection
- **Training Dataset**: [RagTruth]( wandb/RAGTruth-processed)
- **Language**: English
- **Capabilities**: Detects hallucinated spans in answers, provides confidence scores, and calculates average confidence across detected spans.

LettuceDetect excels at processing long documents to determine if an answer aligns with the provided context, making it a powerful tool for ensuring factual accuracy.
prithivMLmods 
posted an update 20 days ago
singhsidhukuldeep 
posted an update 23 days ago
view post
Post
6794
Exciting New Tool for Knowledge Graph Extraction from Plain Text!

I just came across a groundbreaking new tool called KGGen that's solving a major challenge in the AI world - the scarcity of high-quality knowledge graph data.

KGGen is an open-source Python package that leverages language models to extract knowledge graphs (KGs) from plain text. What makes it special is its innovative approach to clustering related entities, which significantly reduces sparsity in the extracted KGs.

The technical approach is fascinating:

1. KGGen uses a multi-stage process involving an LLM (GPT-4o in their implementation) to extract entities and relations from source text
2. It aggregates graphs across sources to reduce redundancy
3. Most importantly, it applies iterative LM-based clustering to refine the raw graph

The clustering stage is particularly innovative - it identifies which nodes and edges refer to the same underlying entities or concepts. This normalizes variations in tense, plurality, stemming, and capitalization (e.g., "labors" clustered with "labor").

The researchers from Stanford and University of Toronto also introduced MINE (Measure of Information in Nodes and Edges), the first benchmark for evaluating KG extractors. When tested against existing methods like OpenIE and GraphRAG, KGGen outperformed them by up to 18%.

For anyone working with knowledge graphs, RAG systems, or KG embeddings, this tool addresses the fundamental challenge of data scarcity that's been holding back progress in graph-based foundation models.

The package is available via pip install kg-gen, making it accessible to everyone. This could be a game-changer for knowledge graph applications!
singhsidhukuldeep 
posted an update 25 days ago
view post
Post
581
Exciting Research Alert: Enhancing Dense Retrieval with Deliberate Thinking

I just came across a fascinating new paper titled "Learning More Effective Representations for Dense Retrieval through Deliberate Thinking Before Search" that introduces DEBATER (Deliberate Thinking based Dense Retriever), a novel approach to improve information retrieval using large language models.

The research team from Northeastern University and Tsinghua University has developed a method that significantly outperforms existing dense retrieval systems by enabling LLMs to "think deliberately" before generating document representations.

>> Technical Details

DEBATER enhances LLM-based retrievers through two key mechanisms:

1. Chain-of-Deliberation (CoD): This approach delays the computation of document embeddings by performing several steps of reasoning. It incorporates a sequence of prompt tokens that stimulate the reasoning capability of LLMs, encouraging the model to think step-by-step before producing the final document embedding.

2. Self Distillation (SD): This mechanism distills knowledge from different thinking steps into the final document representation. It identifies the most informative thinking steps and integrates them into a unified text embedding.

The implementation uses cosine similarity to measure the similarity between queries and documents. During training, DEBATER calculates similarity scores between query representation and document representations at each thinking step, then selects the most useful thinking step from CoD.

>> Performance

What's particularly impressive is that DEBATER-4B outperforms larger 7B-scale LLM-based dense retrievers while using significantly fewer parameters. In experiments on the BEIR benchmark, DEBATER achieved more than a 2% improvement over baseline retrievers.

The researchers found that an appropriate thinking depth (around 4-8 steps) effectively activates the reasoning capabilities of LLM-based retrievers.