Cinematic T2V

non-profit

AI & ML interests

None defined yet.

Recent Activity

CinematicT2vData's activity

sayakpaulย 
posted an update 15 days ago
view post
Post
2359
Diffusers supports a good variety of quantization backends. It can be challenging to navigate through them, given the complex nature of diffusion pipelines in general.

So, @derekl35 set out to write a comprehensive guide that puts users in the front seat. Explore the different backends we support, learn the trade-offs they offer, and finally, check out the cool space we built that lets you compare quantization results.

Give it a go here:
https://lnkd.in/gf8Pi4-2
sayakpaulย 
posted an update 16 days ago
view post
Post
1678
Despite the emergence of combining LLM and DiT architectures for T2I synthesis, its design remains severely understudied.

This was done long ago and got into CVPR25 -- super excited to finally share it now, along with the data and code โ™ฅ๏ธ

We explore several architectural choices that affect this design. We provide an open & reproducible training recipe that works at scale.

Works like Playground v3 have already explored a deep fusion between an LLM and a DiT, sharing their representations through layerwise attention. They exhibit excellent performance on T2I.

Despite its compelling results and other performance virtues, it remains unexplored, which is what we want to improve in our work. Specifically, we take a pre-trained LLM (Gemma-2B) and trainable DiT, and set out to explore what makes a "good deep fusion" between the two for T2I.

We explore several key questions in the work, such as:

Q1: How should we do attention? We considered several alternatives. PixArt-Alpha like attention (cross-attention) is very promising.
Q2: Should we incorporate additional text modulation?
Q3: Can we eliminate timestep conditioning?
Q4: How do we do positional encodings?
Q5: Do instruction-tuned LLMs help deep fusion?
Q6: Would using a decoder LLM from a multimodal model be helpful?
Q7: Does using a better variant of Gemma help?

Based on the above findings, we arrive at FuseDiT with the following components on top of the base architecture from the findings of our experiments.

* No AdaLN-Zero modules
* 1D + 2D-RoPE
* Gemma 2 2B, adjusting DiT configurations accordingly

We trained FuseDiT on a mixture from CC12M, JourneyDB, & SA (~26M image-text pairs) for 800 steps. While not the best model, it's encouraging to develop something in a guided manner using open datasets.

To know more (code, models, all are available), please check out the paper:
https://lnkd.in/gg6qyqZX.
sayakpaulย 
posted an update 4 months ago
view post
Post
3858
Inference-time scaling meets Flux.1-Dev (and others) ๐Ÿ”ฅ

Presenting a simple re-implementation of "Inference-time scaling diffusion models beyond denoising steps" by Ma et al.

I did the simplest random search strategy, but results can potentially be improved with better-guided search methods.

Supports Gemini 2 Flash & Qwen2.5 as verifiers for "LLMGrading" ๐Ÿค—

The steps are simple:

For each round:

1> Starting by sampling 2 starting noises with different seeds.
2> Score the generations w.r.t a metric.
3> Obtain the best generation from the current round.

If you have more compute budget, go to the next search round. Scale the noise pool (2 ** search_round) and repeat 1 - 3.

This constitutes the random search method as done in the paper by Google DeepMind.

Code, more results, and a bunch of other stuff are in the repository. Check it out here: https://github.com/sayakpaul/tt-scale-flux/ ๐Ÿค—
sayakpaulย 
posted an update 4 months ago
view post
Post
2108
We have been cooking a couple of fine-tuning runs on CogVideoX with finetrainers, smol datasets, and LoRA to generate cool video effects like crushing, dissolving, etc.

We are also releasing a LoRA extraction utility from a fully fine-tuned checkpoint. I know that kind of stuff has existed since eternity, but the quality on video models was nothing short of spectacular. Below are some links:

* Models and datasets: finetrainers
* finetrainers: https://github.com/a-r-r-o-w/finetrainers
* LoRA extraction: https://github.com/huggingface/diffusers/blob/main/scripts/extract_lora_from_model.py
  • 1 reply
ยท
sayakpaulย 
posted an update 4 months ago
view post
Post
2049
We have authored a post to go over the state of video generation in the Diffusers ecosystem ๐Ÿงจ

We cover the models supported, the knobs of optims our users can fire, fine-tuning, and more ๐Ÿ”ฅ

5-6GBs for HunyuanVideo, sky is the limit ๐ŸŒŒ ๐Ÿค—
https://huggingface.co/blog/video_gen
sayakpaulย 
posted an update 5 months ago
view post
Post
4452
Commits speak louder than words ๐Ÿคช

* 4 new video models
* Multiple image models, including SANA & Flux Control
* New quantizers -> GGUF & TorchAO
* New training scripts

Enjoy this holiday-special Diffusers release ๐Ÿค—
Notes: https://github.com/huggingface/diffusers/releases/tag/v0.32.0
sayakpaulย 
posted an update 6 months ago
view post
Post
2269
In the past seven days, the Diffusers team has shipped:

1. Two new video models
2. One new image model
3. Two new quantization backends
4. Three new fine-tuning scripts
5. Multiple fixes and library QoL improvements

Coffee on me if someone can guess 1 - 4 correctly.
  • 1 reply
ยท
sayakpaulย 
posted an update 6 months ago
view post
Post
2194
Introducing a high-quality open-preference dataset to further this line of research for image generation.

Despite being such an inseparable component for modern image generation, open preference datasets are a rarity!

So, we decided to work on one with the community!

Check it out here:
https://huggingface.co/blog/image-preferences
  • 8 replies
ยท
sayakpaulย 
posted an update 6 months ago
view post
Post
2216
The Control family of Flux from @black-forest-labs should be discussed more!

It enables structural controls like ControlNets while being significantly less expensive to run!

So, we're working on a Control LoRA training script ๐Ÿค—

It's still WIP, so go easy:
https://github.com/huggingface/diffusers/pull/10130
sayakpaulย 
posted an update 6 months ago
sayakpaulย 
posted an update 7 months ago
view post
Post
2730
It's been a while we shipped native quantization support in diffusers ๐Ÿงจ

We currently support bistandbytes as the official backend but using others like torchao is already very simple.

This post is just a reminder of what's possible:

1. Loading a model with a quantization config
2. Saving a model with quantization config
3. Loading a pre-quantized model
4. enable_model_cpu_offload()
5. Training and loading LoRAs into quantized checkpoints

Docs:
https://huggingface.co/docs/diffusers/main/en/quantization/bitsandbytes
  • 1 reply
ยท
sayakpaulย 
posted an update 8 months ago
view post
Post
2813
Did some little experimentation to resize pre-trained LoRAs on Flux. I explored two themes:

* Decrease the rank of a LoRA
* Increase the rank of a LoRA

The first one is helpful in reducing memory requirements if the LoRA is of a high rank, while the second one is merely an experiment. Another implication of this study is in the unification of LoRA ranks when you would like to torch.compile() them.

Check it out here:
sayakpaul/flux-lora-resizing
  • 1 reply
ยท
sayakpaulย 
posted an update 10 months ago
sayakpaulย 
posted an update 10 months ago
view post
Post
4536
Flux.1-Dev like images but in fewer steps.

Merging code (very simple), inference code, merged params: sayakpaul/FLUX.1-merged

Enjoy the Monday ๐Ÿค—
ยท