AI & ML interests

None defined yet.

Recent Activity

CohereLabsCommunity's activity

Tonic 
posted an update 2 days ago
view post
Post
268
🙋🏻‍♂️ hey there folks ,

So every bio/med/chem meeting i go to i always the same questions "why are you sharing a gdrive link with me for this?" and "Do you have any plans to publish your model weights and datasets on huggingface?" and finally i got a good answer today which explains everything :

basically there is some kind of government censorship on this (usa, but i'm sure others too) and they are told they are not allowed as it is considered a "dataleak" which is illegal !!!!

this is terrible ! but the good news is that we can do something about it !

so there is this "call for opinions and comments" here from the NIH (usa) , and here we can make our opinion on this topic known : https://osp.od.nih.gov/comment-form-responsibly-developing-and-sharing-generative-artificial-intelligence-tools-using-nih-controlled-access-data/

kindly consider dropping your opinion and thoughts about this censorship of science , and share this post , link or thoughts widely .

Together maybe we can start to share data and model weights appropriately and openly in a good way 🙏🏻🚀

cc. @cyrilzakka

prithivMLmods 
posted an update 7 days ago
view post
Post
4780
OpenAI, Google, Hugging Face, and Anthropic have released guides and courses on building agents, prompting techniques, scaling AI use cases, and more. Below are 10+ minimalistic guides and courses that may help you in your progress. 📖

⤷ Agents Companion : https://www.kaggle.com/whitepaper-agent-companion
⤷ Building Effective Agents : https://www.anthropic.com/engineering/building-effective-agents
⤷ Guide to building agents by OpenAI : https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
⤷ Prompt engineering by Google : https://www.kaggle.com/whitepaper-prompt-engineering
⤷ Google: 601 real-world gen AI use cases : https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
⤷ Prompt engineering by IBM : https://www.ibm.com/think/topics/prompt-engineering-guide
⤷ Prompt Engineering by Anthropic : https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
⤷ Scaling AI use cases : https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf
⤷ Prompting Guide 101 : https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf
⤷ AI in the Enterprise by OpenAI : https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf

by HF🤗 :
⤷ AI Agents Course by Huggingface : https://huggingface.co/learn/agents-course/unit0/introduction
⤷ Smol-agents Docs : https://huggingface.co/docs/smolagents/en/tutorials/building_good_agents
⤷ MCP Course by Huggingface : https://huggingface.co/learn/mcp-course/unit0/introduction
⤷ Other Course (LLM, Computer Vision, Deep RL, Audio, Diffusion, Cookbooks, etc..) : https://huggingface.co/learn
  • 2 replies
·
prithivMLmods 
posted an update 8 days ago
view post
Post
2151
Just made a demo for Cosmos-Reason1, a physical AI model that understands physical common sense and generates appropriate embodied decisions in natural language through long chain-of-thought reasoning. Also added video understanding support to it. 🤗🚀

✦ Try the demo here : prithivMLmods/DocScope-R1

⤷ Cosmos-Reason1-7B : nvidia/Cosmos-Reason1-7B
⤷ docscopeOCR-7B-050425-exp : prithivMLmods/docscopeOCR-7B-050425-exp
⤷ Captioner-Relaxed : Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

⤷ GitHub :
https://github.com/PRITHIVSAKTHIUR/Cosmos-x-DocScope
https://github.com/PRITHIVSAKTHIUR/Nvidia-Cosmos-Reason1-Demo.

To know more about it, visit the model card of the respective model. !!
Tonic 
posted an update 12 days ago
view post
Post
2439
🙋🏻‍♂️ Hey there folks ,

Yesterday the world's first "Learn to Vibe Code" application was released .

As vibe coding is the mainstream paradigm , so now the first educational app is there to support it .

You can try it out already :

https://vibe.takara.ai

and of course it's entirely open source, so i already made my issue and feature branch :-) 🚀
takarajordan 
posted an update 15 days ago
view post
Post
344
Cool to see the new model lightonai/Reason-ModernColBERT

Made with late interaction I'd love to recreate the dataset to see a proper apache 2.0 version!

prithivMLmods 
posted an update 17 days ago
view post
Post
2291
Got access to Google's all-new Gemini Diffusion a state-of-the-art text diffusion model. It delivers the performance of Gemini 2.0 Flash-Lite at 5x the speed, generating over 1000 tokens in a fraction of a second and producing impressive results. Below are some initial outputs generated using the model. ♊🔥

Gemini Diffusion Playground ✦ : https://deepmind.google.com/frontiers/gemini-diffusion

Get Access Here : https://docs.google.com/forms/d/1aLm6J13tAkq4v4qwGR3z35W2qWy7mHiiA0wGEpecooo/viewform?edit_requested=true

🔗 To know more, visit: https://deepmind.google/models/gemini-diffusion/
  • 1 reply
·
prithivMLmods 
posted an update 18 days ago
view post
Post
2297
The more optimized explicit content filters with lightweight 𝙜𝙪𝙖𝙧𝙙 models trained based on siglip2 patch16 512 and vit patch16 224 for illustration and explicit content classification for content moderation in social media, forums, and parental controls for safer browsing environments. this version fixes the issues in the previous release, which lacked sufficient resources. 🚀

⤷ Models :
→ siglip2 mini explicit content : prithivMLmods/siglip2-mini-explicit-content [recommended]
→ vit mini explicit content : prithivMLmods/vit-mini-explicit-content

⤷ Building image safety-guard models : strangerguardhf

⤷ Datasets :
→ nsfw multidomain classification : strangerguardhf/NSFW-MultiDomain-Classification
→ nsfw multidomain classification v2.0 : strangerguardhf/NSFW-MultiDomain-Classification-v2.0

⤷ Collection :
→ Updated Versions [05192025] : prithivMLmods/explicit-content-filters-682aaa4733e378561925ca2b
→ Previous Versions : prithivMLmods/siglip2-content-filters-042025-final-680fe4aa1a9d589bf2c915ff

Find a collections inside the collection.👆

To know more about it, visit the model card of the respective model.
  • 1 reply
·
prithivMLmods 
posted an update 22 days ago
view post
Post
2699
Models for detecting images generated by diffusion models (Flux.1, SDXL, ..) are trained or fine-tuned using image classification models for content moderation. These models use datasets available on the Hub. For identifying AI-generated images or moderating visual content, the recommended model is OpenSDI-Flux.1-SigLIP2.😺🧨

Models : prithivMLmods/OpenSDI-Flux.1-SigLIP2 [Best approach for AI [Diffusion Generated] vs. real image classification] prithivMLmods/OpenSDI-SD2.1-SigLIP2 prithivMLmods/OpenSDI-SD3-SigLIP2 prithivMLmods/OpenSDI-SD1.5-SigLIP2 prithivMLmods/OpenSDI-SDXL-SigLIP2

Datasets : nebula/OpenSDI_test madebyollin/megalith-10m

Collection : prithivMLmods/opensdi-diffusion-generated-image-classification-682488a3a3e5be7083db3383

Find a collections inside the collection.👆

To know more about it, visit the model card of the respective model.
prithivMLmods 
posted an update 23 days ago
view post
Post
2029
Dropping some image classification models for content moderation and classifiers trained with datasets available on the Hub. All are fine-tuned on the siglip2 backbone, (competitions AIOrNot, Imagenette, and Driver-Drowsiness). Models and datasets are listed below:

🤗Models :
AI or Not : prithivMLmods/AIorNot-SigLIP2
Driver Drowsiness Detection : prithivMLmods/DOZE-GUARD-RLDD
Subset 10 ImageNet : prithivMLmods/IMAGENETTE

🥊Datasets :
+ competitions/aiornot
+ akahana/Driver-Drowsiness-Dataset
+ frgfm/imagenette

🔗Collection :
[The previous collection of models is also listed in the same collection, so you can find more models focused on image classification tasks.]

- prithivMLmods/multiclass-image-classification-05142025-68234c8010a9350a4d6739b5

Find a collections inside the collection.🤪👆

To know more about it, visit the model card of the respective model.
prithivMLmods 
posted an update 27 days ago
view post
Post
3526
Dropping some image classification models for content moderation, balancers, and classifiers trained on synthetic datasets—along with others based on datasets available on the Hub. Also loaded a few low-rank datasets for realistic gender portrait classification and document-type classifiers, all fine-tuned on the SigLIP-2 Patch-16 224 backbone. Models and datasets are listed below:

🤗Models & Datasets :

Realistic Gender Classification : prithivMLmods/Realistic-Gender-Classification
prithivMLmods/Realistic-Portrait-Gender-1024px
Document Type Detection : prithivMLmods/Document-Type-Detection
prithivMLmods/Document-Type-Detection
Face Mask Detection : prithivMLmods/Face-Mask-Detection
DamarJati/Face-Mask-Detection
Alzheimer Stage Classifier : prithivMLmods/Alzheimer-Stage-Classifier
SilpaCS/Augmented_alzheimer
Bone Fracture Detection : prithivMLmods/Bone-Fracture-Detection
Hemg/bone-fracture-detection
GiD Land Cover Classification : prithivMLmods/GiD-Land-Cover-Classification
jonathan-roberts1/GID

🤗Collection : prithivMLmods/siglip2-05102025-681c2b0e406f0740a993fc1c

To know more about it, visit the model card of the respective model.