AI & ML interests

None defined yet.

Recent Activity

OpenLLM-France's activity

prithivMLmods 
posted an update 1 day ago
view post
Post
1330
Dropping Downstream tasks using newly initialized parameters and weights ([classifier.bias & weights]) support domain-specific 𝗶𝗺𝗮𝗴𝗲 𝗰𝗹𝗮𝘀𝘀𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻. Based on siglip2-base-patch16-224 and DomainNet (single-domain, multi-source adaptation), with Fashion-MNIST for experimental testing. 🧤☄️

Fashion-Mnist : prithivMLmods/Fashion-Mnist-SigLIP2
Multisource-121 : prithivMLmods/Multisource-121-DomainNet
Painting-126 : prithivMLmods/Painting-126-DomainNet
Sketch-126 : prithivMLmods/Sketch-126-DomainNet
Clipart-126 : prithivMLmods/Clipart-126-DomainNet

Models are trained with different parameter settings for experimental purposes only, with the intent of further development. Refer to the model page below for instructions on running it with Transformers 🤗.

Collection : prithivMLmods/domainnet-0324-67e0e3c934c03cc40c6c8782

Citations : SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features https://arxiv.org/pdf/2502.14786 & Moment Matching for Multi-Source Domain Adaptation : https://arxiv.org/pdf/1812.01754

louisbrulenaudet 
posted an update 2 days ago
view post
Post
677
I’ve just released logfire-callback on PyPI, designed to facilitate monitoring of Hugging Face Transformer training loops using Pydantic Logfire 🤗

The callback will automatically log training start with configuration parameters, periodic metrics and training completion ⏱️

Install the package using pip:
pip install logfire-callback

First, ensure you have a Logfire API token and set it as an environment variable:
export LOGFIRE_TOKEN=your_logfire_token

Then use the callback in your training code:
from transformers import Trainer, TrainingArguments
from logfire_callback import LogfireCallback

# Initialize your model, dataset, etc.

training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    # ... other training arguments
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    callbacks=[LogfireCallback()]  # Add the Logfire callback here
)

trainer.train()

If you have any feedback, please reach out at @louisbrulenaudet
prithivMLmods 
posted an update 5 days ago
view post
Post
2171
Play with Orpheus TTS, a Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been fine-tuned to deliver human-level speech synthesis 🔥🗣️

👉GitHub [ Demo ] : https://github.com/PRITHIVSAKTHIUR/Orpheus-TTS-Edge

Demo supporting both text-to-speech and text-to-llm responses in speech.

> voice: tara, dan, emma, josh
> emotion: <laugh>, <chuckle>, <sigh>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.

🥠Orpheus-3b-0.1-ft
Model Page: canopylabs/orpheus-3b-0.1-ft

🥠Orpheus-3b-0.1-ft
Colab Inference Notebook: https://colab.research.google.com/drive/1KhXT56UePPUHhqitJNUxq63k-pQomz3N?usp=sharing

🥠Finetune [ orpheus-3b-0.1-pretrained ]
Resource: https://github.com/canopyai/Orpheus-TTS/tree/main/finetune

🥠Model-releases:
https://canopylabs.ai/model-releases
  • 1 reply
·
prithivMLmods 
posted an update 11 days ago
view post
Post
920
Hey Guys! One Small Announcement 🤗
Stranger Zone now accepts LoRA requests!

✍️Request : strangerzonehf/Request-LoRA [ or ] strangerzonehf/Request-LoRA#1

Page : https://huggingface.co/strangerzonehf

Describe the artistic properties by posting sample images or links to similar images in the request discussion. If the adapters you're asking for are truly creative and safe for work, I'll train and upload the LoRA to the Stranger Zone repo!

Thank you!
prithivMLmods 
posted an update 13 days ago
view post
Post
2471
Gemma-3-4B : Image and Video Inference 🖼️🎥

🧤Space: prithivMLmods/Gemma-3-Multimodal
🥠Git : https://github.com/PRITHIVSAKTHIUR/Gemma-3-Multimodal

@gemma3 : {Tag + Space_+ 'prompt'}
@video-infer : {Tag + Space_+ 'prompt'}

+ Gemma3-4B : google/gemma-3-4b-it
+ By default, it runs : prithivMLmods/Qwen2-VL-OCR-2B-Instruct

Gemma 3 Technical Report : https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf
  • 1 reply
·
prithivMLmods 
posted an update 14 days ago
Tonic 
posted an update 18 days ago
view post
Post
1160
🙋🏻‍♂️Hey there folks,

Did you know that you can use ModernBERT to detect model hallucinations ?

Check out the Demo : Tonic/hallucination-test

See here for Medical Context Demo : MultiTransformer/tonic-discharge-guard

check out the model from KRLabs : KRLabsOrg/lettucedect-large-modernbert-en-v1

and the library they kindly open sourced for it : https://github.com/KRLabsOrg/LettuceDetect

👆🏻if you like this topic please contribute code upstream 🚀

  • 2 replies
·
ZennyKenny 
posted an update 20 days ago
view post
Post
515
It took me a while, but I've finally got it working: ZennyKenny/note-to-text

Using a Meta LLaMa checkpoint from Unsloth and some help from the HF community, you can capture handwritten notes and convert them into digital format in just a few second.

Really exciting times for AI builders on Hugging Face.
  • 2 replies
·
Tonic 
posted an update 20 days ago
view post
Post
701
Powered by KRLabsOrg/lettucedect-large-modernbert-en-v1 from KRLabsOrg.

Detect hallucinations in answers based on context and questions using ModernBERT with 8192-token context support!

### Model Details
- **Model Name**: [lettucedect-large-modernbert-en-v1]( KRLabsOrg/lettucedect-large-modernbert-en-v1)
- **Organization**: [KRLabsOrg](https://huggingface.co/KRLabsOrg)
- **Github**: [https://github.com/KRLabsOrg/LettuceDetect](https://github.com/KRLabsOrg/LettuceDetect)
- **Architecture**: ModernBERT (Large) with extended context support up to 8192 tokens
- **Task**: Token Classification / Hallucination Detection
- **Training Dataset**: [RagTruth]( wandb/RAGTruth-processed)
- **Language**: English
- **Capabilities**: Detects hallucinated spans in answers, provides confidence scores, and calculates average confidence across detected spans.

LettuceDetect excels at processing long documents to determine if an answer aligns with the provided context, making it a powerful tool for ensuring factual accuracy.
prithivMLmods 
posted an update 20 days ago