You can now use the "Synthetic Data Generator" at a much larger scale with your preferred inference engine: Ollama, vLLM, TGI, and serverless inference! π₯
Weβre launching a FREE and CERTIFIED course on Agents!
We're thrilled to announce the launch of the Hugging Face Agents course on Learn! This interactive, certified course will guide you through building and deploying your own AI agents.
Here's what you'll learn:
- Understanding Agents: We'll break down the fundamentals of AI agents, showing you how they use LLMs to perceive their environment (observations), reason about it (thoughts), and take actions. Think of a smart assistant that can book appointments, answer emails, or even write code based on your instructions. - Building with Frameworks: You'll dive into popular agent frameworks like LangChain, LlamaIndex and smolagents. These tools provide the building blocks for creating complex agent behaviors. - Real-World Applications: See how agents are used in practice, from automating SQL queries to generating code and summarizing complex documents. - Certification: Earn a certification by completing the course modules, implementing a use case, and passing a benchmark assessment. This proves your skills in building and deploying AI agents. Audience
This course is designed for anyone interested in the future of AI. Whether you're a developer, data scientist, or simply curious about AI, this course will equip you with the knowledge and skills to build your own intelligent agents.
Enroll today and start building the next generation of AI agent applications!
Introducing the Synthetic Data Generator, a user-friendly application that takes a no-code approach to creating custom datasets with Large Language Models (LLMs). The best part: A simple step-by-step process, making dataset creation a non-technical breeze, allowing anyone to create datasets and models in minutes and without any code.
Quick update from week 1 of smol course. The community is taking the driving seat and using the material for their own projects. If you want to do the same, join in!
- we have ongoing translation projects in Korean, Vietnamese, Portuguese, and Spanish - 3 chapters are ready for students. On topics like, instruction tuning, preference alignment, and parameter efficient fine tuning - 3 chapters are in progress on evaluation, vision language models, and synthetic data. - around 780 people have forked the repo to use it for learning, teaching, sharing.
βοΈ Next step is to support people that want to use the course for teaching, content creation, internal knowledge sharing, or anything. If you're into this. Drop an issue or PR
Open Preference Dataset for Text-to-Image Generation by the π€ Community
Open Image Preferences is an Apache 2.0 licensed dataset for text-to-image generation. This dataset contains 10K text-to-image preference pairs across common image generation categories, while using different model families and varying prompt complexities.