Gemini 2.5 Flash is here! We excited launch our first hybrid reasoning Gemini model. In Flash 2.5 developer can turn thinking off.
**TL;DR:** - 🧠 Controllable "Thinking" with thinking budget with up to 24k token - 🌌 1 Million multimodal input context for text, image, video, audio, and pdf - 🛠️ Function calling, structured output, google search & code execution. - 🏦 $0.15 1M input tokens; $0.6 or $3.5 (thinking on) per million output tokens (thinking tokens are billed as output tokens) - 💡 Knowledge cut of January 2025 - 🚀 Rate limits - Free 10 RPM 500 req/day - 🏅Outperforms 2.0 Flash on every benchmark
If you've followed the progress of robotics in the past 18 months, you've likely noticed how robotics is increasingly becoming the next frontier that AI will unlock.
At Hugging Face—in robotics and across all AI fields—we believe in a future where AI and robots are open-source, transparent, and affordable; community-built and safe; hackable and fun. We've had so much mutual understanding and passion working with the Pollen Robotics team over the past year that we decided to join forces!
You can already find our open-source humanoid robot platform Reachy 2 on the Pollen website and the Pollen community and people here on the hub at pollen-robotics
We're so excited to build and share more open-source robots with the world in the coming months!
The new DeepSite space is really insane for vibe-coders enzostvs/deepsite
With the wave of vibe-coding-optimized LLMs like the latest open-source DeepSeek model (version V3-0324), you can basically prompt out-of-the-box and create any app and game in one-shot.
It feels so powerful to me, no more complex framework or under-the-hood prompt engineering to have a working text-to-app tool.
AI is eating the world and *open-source* AI is eating AI itself!
PS: and even more meta is that the DeepSite app and DeepSeek model are both fully open-source code => time to start recursively improve?
PPS: you still need some inference hosting unless you're running the 600B param model at home, so check the very nice list of HF Inference Providers for this model: deepseek-ai/DeepSeek-V3-0324
Gemini 2.5 Pro, thinking by default! We excited launch our best Gemini model for reasoning, multimodal and coding yet! #1 on LMSYS, Humanity’s Last Exam, AIME and GPQA and more!
TL;DR: - 💻 Best Gemini coding model yet, particularly for web development (excels on LiveCodeBench). - 🧠 Default "Thinking" with up to 64k token output - 🌌 1 Million multimodal input context for text, image, video, audio, and pdf - 🛠️ Function calling, structured output, google search & code execution. - 🏆 #1 on LMArena & sota on AIME, GPQA, Humanity's Last Exam - 💡 Knowledge cut of January 2025 - 🤗 Available for free as Experimental in AI Studio, Gemini API & Gemini APP - 🚀 Rate limits - Free 2 RPM 50 req/day
It's beating Claude 3.7 on (competitive) programming –a domain Anthropic has been historically really strong at– and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!
We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger 💪
Together with the models, we are releasing:
📊CodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots
🏆 IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi
The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch 💪
What’s new compared to existing reasoning datasets?
♾ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.
🐳 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.
📀 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.
⏳ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that can’t be verified with a rules-based parser)
📊 We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!
🧪 Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.
🧠 Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.
🔥 Step 3: show we can go from base model -> SFT -> RL via multi-stage training.