Hugging Face Course

non-profit
Activity Feed

AI & ML interests

A central place for all models and datasets created in the HuggingFace course.

Recent Activity

huggingface-course's activity

lewtunย 
posted an update 12 days ago
view post
Post
3267
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!

https://x.com/casper_hansen_/status/1875872309996855343

Together with the recent PRIME method [2] for scaling RL, reasoning for open models is looking pretty exciting for 2025!

[1] Training Large Language Models to Reason in a Continuous Latent Space (2412.06769)
[2] https://huggingface.co/blog/ganqu/prime
lewtunย 
posted an update 19 days ago
view post
Post
2130
This paper ( HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs (2412.18925)) has a really interesting recipe for inducing o1-like behaviour in Llama models:

* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting.
* Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases)
* Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1
* Use the resulting data for SFT & RL
* Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.

Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
  • 1 reply
ยท
lewtunย 
posted an update about 1 month ago
view post
Post
6740
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute ๐Ÿ”ฅ

How? By combining step-wise reward models with tree search algorithms :)

We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"

We're open sourcing the full recipe and sharing a detailed blog post.

In our blog post we cover:

๐Ÿ“ˆ Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.

๐ŸŽ„ Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.

๐Ÿงญ Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM

Here's the links:

- Blog post: HuggingFaceH4/blogpost-scaling-test-time-compute

- Code: https://github.com/huggingface/search-and-learn

Enjoy!
  • 2 replies
ยท
julien-cย 
posted an update about 1 month ago
view post
Post
8426
After some heated discussion ๐Ÿ”ฅ, we clarify our intent re. storage limits on the Hub

TL;DR:
- public storage is free, and (unless blatant abuse) unlimited. We do ask that you consider upgrading to PRO and/or Enterprise Hub if possible
- private storage is paid above a significant free tier (1TB if you have a paid account, 100GB otherwise)

docs: https://huggingface.co/docs/hub/storage-limits

We optimize our infrastructure continuously to scale our storage for the coming years of growth in Machine learning, to the benefit of the community ๐Ÿ”ฅ

cc: @reach-vb @pierric @victor and the HF team
ยท
reach-vbย 
posted an update about 1 month ago
view post
Post
4236
VLMs are going through quite an open revolution AND on-device friendly sizes:

1. Google DeepMind w/ PaliGemma2 - 3B, 10B & 28B: google/paligemma-2-release-67500e1e1dbfdd4dee27ba48

2. OpenGVLabs w/ InternVL 2.5 - 1B, 2B, 4B, 8B, 26B, 38B & 78B: https://huggingface.co/collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c

3. Qwen w/ Qwen 2 VL - 2B, 7B & 72B: Qwen/qwen2-vl-66cee7455501d7126940800d

4. Microsoft w/ FlorenceVL - 3B & 8B: https://huggingface.co/jiuhai

5. Moondream2 w/ 0.5B: https://huggingface.co/vikhyatk/

What a time to be alive! ๐Ÿ”ฅ
julien-cย 
posted an update about 2 months ago
view post
Post
2624
wow ๐Ÿ˜ฎ

INTELLECT-1 is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.

PrimeIntellect/INTELLECT-1-Instruct
reach-vbย 
posted an update about 2 months ago
view post
Post
4103
Massive week for Open AI/ ML:

Mistral Pixtral & Instruct Large - ~123B, 128K context, multilingual, json + function calling & open weights
mistralai/Pixtral-Large-Instruct-2411
mistralai/Mistral-Large-Instruct-2411

Allen AI Tรผlu 70B & 8B - competive with claude 3.5 haiku, beats all major open models like llama 3.1 70B, qwen 2.5 and nemotron
allenai/tulu-3-models-673b8e0dc3512e30e7dc54f5
allenai/tulu-3-datasets-673b8df14442393f7213f372

Llava o1 - vlm capable of spontaneous, systematic reasoning, similar to GPT-o1, 11B model outperforms gemini-1.5-pro, gpt-4o-mini, and llama-3.2-90B-vision
Xkev/Llama-3.2V-11B-cot

Black Forest Labs Flux.1 tools - four new state of the art model checkpoints & 2 adapters for fill, depth, canny & redux, open weights
reach-vb/black-forest-labs-flux1-6743847bde9997dd26609817

Jina AI Jina CLIP v2 - general purpose multilingual and multimodal (text & image) embedding model, 900M params, 512 x 512 resolution, matroyoshka representations (1024 to 64)
jinaai/jina-clip-v2

Apple AIM v2 & CoreML MobileCLIP - large scale vision encoders outperform CLIP and SigLIP. CoreML optimised MobileCLIP models
apple/aimv2-6720fe1558d94c7805f7688c
apple/coreml-mobileclip

A lot more got released like, OpenScholar ( OpenScholar/openscholar-v1-67376a89f6a80f448da411a6), smoltalk ( HuggingFaceTB/smoltalk), Hymba ( nvidia/hymba-673c35516c12c4b98b5e845f), Open ASR Leaderboard ( hf-audio/open_asr_leaderboard) and much more..

Can't wait for the next week! ๐Ÿค—

More Argilla screenshots

#4 opened about 2 months ago by
nataliaElv

argilla-chapter-images

#3 opened about 2 months ago by
nataliaElv

Chapter 10 images

#2 opened about 2 months ago by
nataliaElv
reach-vbย 
posted an update 2 months ago
view post
Post
4387
What a brilliant week for Open Source AI!

Qwen 2.5 Coder by Alibaba - 0.5B / 1.5B / 3B / 7B / 14B/ 32B (Base + Instruct) Code generation LLMs, with 32B tackling giants like Gemnini 1.5 Pro, Claude Sonnet
Qwen/qwen25-coder-66eaa22e6f99801bf65b0c2f

LLM2CLIP from Microsoft - Leverage LLMs to train ultra-powerful CLIP models! Boosts performance over the previous SOTA by ~17%
microsoft/llm2clip-672323a266173cfa40b32d4c

Athene v2 Chat & Agent by NexusFlow - SoTA general LLM fine-tuned from Qwen 2.5 72B excels at Chat + Function Calling/ JSON/ Agents
Nexusflow/athene-v2-6735b85e505981a794fb02cc

Orca Agent Instruct by Microsoft - 1 million instruct pairs covering text editing, creative writing, coding, reading comprehension, etc - permissively licensed
microsoft/orca-agentinstruct-1M-v1

Ultravox by FixieAI - 70B/ 8B model approaching GPT4o level, pick any LLM, train an adapter with Whisper as Audio Encoder
reach-vb/ultravox-audio-language-model-release-67373b602af0a52b2a88ae71

JanusFlow 1.3 by DeepSeek - Next iteration of their Unified MultiModal LLM Janus with RectifiedFlow
deepseek-ai/JanusFlow-1.3B

Common Corpus by Pleais - 2,003,039,184,047 multilingual, commercially permissive and high quality tokens!
PleIAs/common_corpus

I'm sure I missed a lot, can't wait for the next week!

Put down in comments what I missed! ๐Ÿค—
reach-vbย 
posted an update 2 months ago
view post
Post
1642
Smol TTS models are here! OuteTTS-0.1-350M - Zero shot voice cloning, built on LLaMa architecture, CC-BY license! ๐Ÿ”ฅ

> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp โšก

Three-step approach to TTS:

> Audio tokenization using WavTokenizer (75 tok per second)
> CTC forced alignment for word-to-audio token mapping
> Structured prompt creation w/ transcription, duration, audio tokens

The model is extremely impressive for 350M parameters! Kudos to the
OuteAI team on such a brilliant feat - I'd love to see this be applied on larger data and smarter backbones like SmolLM ๐Ÿค—

Check out the models here: OuteAI/outetts-6728aa71a53a076e4ba4817c
reach-vbย 
posted an update 3 months ago
view post
Post
3001
Smol models ftw! AMD released AMD OLMo 1B - beats OpenELM, tiny llama on MT Bench, Alpaca Eval - Apache 2.0 licensed ๐Ÿ”ฅ

> Trained with 1.3 trillion (dolma 1.7) tokens on 16 nodes, each with 4 MI250 GPUs

> Three checkpoints:

- AMD OLMo 1B: Pre-trained model
- AMD OLMo 1B SFT: Supervised fine-tuned on Tulu V2, OpenHermes-2.5, WebInstructSub, and Code-Feedback datasets
- AMD OLMo 1B SFT DPO: Aligned with human preferences using Direct Preference Optimization (DPO) on UltraFeedback dataset

Key Insights:
> Pre-trained with less than half the tokens of OLMo-1B
> Post-training steps include two-phase SFT and DPO alignment
> Data for SFT:
- Phase 1: Tulu V2
- Phase 2: OpenHermes-2.5, WebInstructSub, and Code-Feedback

> Model checkpoints on the Hub & Integrated with Transformers โšก๏ธ

Congratulations & kudos to AMD on a brilliant smol model release! ๐Ÿค—

amd/amd-olmo-6723e7d04a49116d8ec95070
reach-vbย 
posted an update 3 months ago
view post
Post
2472
What a great day for Open Science! @AIatMeta released models, datasets, and code for many of its research artefacts! ๐Ÿ”ฅ

1. Meta Segment Anything Model 2.1: An updated checkpoint with improved results on visually similar objects, small objects and occlusion handling. A new developer suite will be added to make it easier for developers to build with SAM 2.

Model checkpoints: reach-vb/sam-21-6702d40defe7611a8bafa881

2. Layer Skip: Inference code and fine-tuned checkpoints demonstrating a new method for enhancing LLM performance.

Model checkpoints: facebook/layerskip-666b25c50c8ae90e1965727a

3. SALSA: New code enables researchers to benchmark AI-based attacks to validate security for post-quantum cryptography.

Repo: https://github.com/facebookresearch/LWE-benchmarking

4. Meta Lingua: A lightweight and self-contained codebase designed to train language models at scale.

Repo: https://github.com/facebookresearch/lingua

5. Meta Open Materials: New open source models and the largest dataset to accelerate AI-driven discovery of new inorganic materials.

Model checkpoints: fairchem/OMAT24

6. MEXMA: A new research paper and code for our novel pre-trained cross-lingual sentence encoder covering 80 languages.

Model checkpoint: facebook/MEXMA

7. Self-Taught Evaluator: a new method for generating synthetic preference data to train reward models without relying on human annotations.

Model checkpoint: facebook/Self-taught-evaluator-llama3.1-70B

8. Meta Spirit LM: An open-source language model for seamless speech and text integration.

Repo: https://github.com/facebookresearch/spiritlm
  • 3 replies
ยท
reach-vbย 
posted an update 3 months ago
view post
Post
5477
Multimodal Ichigo Llama 3.1 - Real Time Voice AI ๐Ÿ”ฅ

> WhisperSpeech X Llama 3.1 8B
> Trained on 50K hours of speech (7 languages)
> Continually trained on 45hrs 10x A1000s
> MLS -> WhisperVQ tokens -> Llama 3.1
> Instruction tuned on 1.89M samples
> 70% speech, 20% transcription, 10% text
> Apache 2.0 licensed โšก

Architecture:
> WhisperSpeech/ VQ for Semantic Tokens
> Llama 3.1 8B Instruct for Text backbone
> Early fusion (Chameleon)

I'm super bullish on HomeBrew/ Jan and early fusion, audio and text, multimodal models!

(P.S. Play with the demo on Hugging Face: jan-hq/Ichigo-llama3.1-s-instruct)
reach-vbย 
posted an update 3 months ago
view post
Post
3135
NEW: Open Source Text/ Image to video model is out - MIT licensed - Rivals Gen-3, Pika & Kling ๐Ÿ”ฅ

> Pyramid Flow: Training-efficient Autoregressive Video Generation method
> Utilizes Flow Matching
> Trains on open-source datasets
> Generates high-quality 10-second videos
> Video resolution: 768p
> Frame rate: 24 FPS
> Supports image-to-video generation

> Model checkpoints available on the hub ๐Ÿค—: rain1011/pyramid-flow-sd3
reach-vbย 
posted an update 3 months ago
view post
Post
2123
On-device AI framework ecosystem is blooming these days:

1. llama.cpp - All things Whisper, LLMs & VLMs - run across Metal, CUDA and other backends (AMD/ NPU etc)
https://github.com/ggerganov/llama.cpp

2. MLC - Deploy LLMs across platforms especially WebGPU (fastest WebGPU LLM implementation out there)
https://github.com/mlc-ai/web-llm

3. MLX - Arguably the fastest general purpose framework (Mac only) - Supports all major Image Generation (Flux, SDXL, etc), Transcription (Whisper), LLMs
https://github.com/ml-explore/mlx-examples

4. Candle - Cross-platform general purpose framework written in Rust - wide coverage across model categories
https://github.com/huggingface/candle

Honorable mentions:

1. Transformers.js - Javascript (WebGPU) implementation built on top of ONNXruntimeweb
https://github.com/xenova/transformers.js

2. Mistral rs - Rust implementation for LLMs & VLMs, built on top of Candle
https://github.com/EricLBuehler/mistral.rs

3. Ratchet - Cross platform, rust based WebGPU framework built for battle-tested deployments
https://github.com/huggingface/ratchet

4. Zml - Cross platform, Zig based ML framework
https://github.com/zml/zml

Looking forward to how the ecosystem would look 1 year from now - Quite bullish on the top 4 atm - but open source ecosystem changes quite a bit! ๐Ÿค—

Also, which frameworks did I miss?
  • 1 reply
ยท