you can easily fine-tune, quantize, play with sota vision LM InternVL3 now 🔥 we have recently merged InternVL3 to Hugging Face transformers and released converted checkpoints 🤗
Meta released Llama Guard 4 and new Prompt Guard 2 models 🔥
Llama Guard 4 is a new model to filter model inputs/outputs both text-only and image 🛡️ use it before and after LLMs/VLMs! meta-llama/Llama-Guard-4-12B
Meta dropped swiss army knives for vision with A2.0 license 👏 > image/video encoders for vision language modelling and spatial understanding (object detection etc) 👏 > The vision LM outperforms InternVL3 and Qwen2.5VL 👏 > They also release gigantic video and image datasets
The authors attempt to come up with single versatile vision encoder to align on diverse set of tasks.
They trained Perception Encoder (PE) Core: a new state-of-the-art family of vision encoders that can be aligned for both vision-language and spatial tasks. For zero-shot image tasks, it outperforms latest sota SigLIP2 👏
> Among fine-tuned ones, first one is PE-Spatial. It's a model to detect bounding boxes, segmentation, depth estimation and it outperforms all other models 😮
> Second one is PLM, Perception Language Model, where they combine PE-Core with Qwen2.5 LM 7B. it outperforms all other models (including InternVL3 which was trained with Qwen2.5LM too!)
The authors release the following checkpoints in sizes base, large and giant:
Authors release following datasets 📑 > PE Video: Gigantic video datasete of 1M videos with 120k expert annotations ⏯️ > PLM-Video and PLM-Image: Human and auto-annotated image and video datasets on region-based tasks > PLM-VideoBench: New video benchmark on MCQA
Most of the vision LMs focus on image as a whole, lacking localized references in captions, and not taking in visual prompts (points, boxes, drawings around objects)
DAM addresses this on two levels: new vision backbone that takes in focal crops and the image itself, and a large scale dataset 👀
They generate a dataset by extending existing segmentation and referring expression generation datasets like REFCOCO, by passing in the images and classes to VLMs and generating captions.
Lastly, they also release a new benchmark again with self-supervision, they use an LLM to evaluate the detailed captions focusing on localization 👏
New king of open VLMs: InternVL3 takes Qwen 2.5's crown! 👑
InternVL have been a wildly successful series of model : and the latest iteration has just taken back their crown thanks to their superior, natively multimodal vision training pipeline.
➡️ Most of the vision language models (VLMs) these days are built like Frankenstein : take a good text-only Large Language Model (LLM) backbone, stitch a specific vision transformer (ViT) on top of it. Then the training is sequential 🔢 : 1. Freeze the LLM weights while you train the ViT only to work with the LLM part, then 2. Unfreeze all weights to train all weights in order to work together.
💫 The Shanghai Lab decided to challenge this paradigm and chose this approach that they call "native". For each of their model sizes, they still start from a good LLM (mostly Qwen-2.5 series, did I tell you I'm a huge fan of Qwen? ❤️), and stitch the ViT, but they don't freeze anything : they train all weights together with interleaved text and image understanding data in a single pre-training phase 🎨.
They claim it results in more seamless interactions between modalities. And the results prove them right: they took the crown of top VLMs, at nearly all sizes, from their Qwen-2.5 parents. 👑
multimodal > Moonshot AI released Kimi VL Thinking, first working open-source multimodal reasoning model and Kimi VL Instruct, both 16B MoEs with 3B active params (OS) > InternVL3 released based on Qwen2.5VL, 7 ckpts with various sizes (1B to 78B)
LLMs > NVIDIA released Llama-3_1-Nemotron-Ultra-253B-v1 an LLM built on Llama 405B for reasoning, chat and tool use > Agentica released DeepCoder-14B-Preview, fine-tuned version of DeepSeek-R1-Distilled-Qwen-14B on problem-test pairs, along with the compiled dataset > Zyphra/ZR1-1.5B is a new small reasoning LLM built on R1-Distill-1.5B (OS) > Skywork-OR1-32B-Preview is a new reasoning model by Skywork
Image Generation > HiDream releases three new models, HiDream I1 Dev, I1 Full, and I1 fast for image generation (OS)
🚀 DeepSeek R1 moment has come for GUI agents: Rule-based Reinforcement Learning gives better results than SFT with 500x smaller datasets!
Traditionally (by which I mean "in the last few months"), GUI agents have been trained with supervised fine-tuning (SFT). This meant, collecting huge datasets of screen captures from people using computers, and using these to fine-tune your model. 📚
👉 But last week, a new paper introduced UI-R1, applying DeepSeek's R1-style rule-based reinforcement learning (RL) specifically to GUI action prediction tasks. This is big news: with RL, maybe we could build good agents without the need for huge datasets.
UI-R1 uses a unified reward function that evaluates multiple responses from models, optimizing via policy algorithms like Group Relative Policy Optimization (GRPO).
Specifically, the reward function assesses: 🎯 Action type accuracy: Does the predicted action match the ground truth? 📍 Coordinate accuracy (specifically for clicks): Is the predicted click within the correct bounding box? 📑 Output format: Does the model clearly articulate both its reasoning and final action?
Using just 136 carefully selected mobile tasks—compared to 76,000 tasks for larger models like OS-Atlas—UI-R1 shows significant efficiency and improved performance: 📈 Boosted action prediction accuracy from 76% to 89% on AndroidControl. 🌐 Outperformed larger, SFT-trained models (e.g., OS-Atlas-7B), demonstrating superior results with vastly fewer data points (136 tasks vs. 76K). 🔍 Enhanced adaptability and generalization, excelling even in out-of-domain scenarios.
The paper tests this RL-based method only in low-level GUI tasks. Could it generalize to more complex interactions? 🧐
👀 Multimodal > Mistral AI released a 24B vision LM, both base and instruction FT versions, sota 🔥 (OS) > with IBM we released SmolDocling, a sota 256M document parser with Apache 2.0 license (OS) > SpatialLM is a new vision LM that outputs 3D bounding boxes, comes with 0.5B (QwenVL based) and 1B (Llama based) variants > SkyWork released SkyWork-R1V-38B, new vision reasoning model (OS)
💬 LLMs > NVIDIA released new Nemotron models in 49B and 8B with their post-training dataset > LG released EXAONE, new reasoning models in 2.4B, 7.8B and 32B > Dataset: Glaive AI released a new reasoning dataset of 22M+ examples > Dataset: NVIDIA released new helpfulness dataset HelpSteer3 > Dataset: OpenManusRL is a new agent dataset based on ReAct framework (OS) > Open-R1 team released OlympicCoder, new competitive coder model in 7B and 32B > Dataset: GeneralThought-430K is a new reasoning dataset (OS)
🖼️ Image Generation/Computer Vision > Roboflow released RF-DETR, new real-time sota object detector (OS) 🔥 > YOLOE is a new real-time zero-shot object detector with text and visual prompts 🥹 > Stability AI released Stable Virtual Camera, a new novel view synthesis model > Tencent released Hunyuan3D-2mini, new small and fast 3D asset generation model > ByteDance released InfiniteYou, new realistic photo generation model > StarVector is a new 8B model that generates svg from images > FlexWorld is a new model that expands 3D views (OS)
🎤 Audio > Sesame released CSM-1B new speech generation model (OS)
🤖 Robotics > NVIDIA released GR00T, new robotics model for generalized reasoning and skills, along with the dataset
As one of the most popular local inference solutions, the community had been asking us to integrate vLLM: after a heavy refactoring of our LLM classes, we've just released smolagents 1.11.0, with a brand new VLLMModel class.
If you ever asked which LLM is best for powering agents, we've just made a leaderboard that ranks them all! Built with @albertvillanova, this ranks LLMs powering a smolagents CodeAgent on subsets of various benchmarks. ✅
🏆 GPT-4.5 comes on top, even beating reasoning models like DeepSeek-R1 or o1. And Claude-3.7-Sonnet is a close second!
The leaderboard also allows you to show the scores of vanilla LLMs (without any agentic setup) on the same benchmarks: this shows the huge improvements brought by agentic setups. 💪
(Note that results will be added manually, so the leaderboard might not always have the latest LLMs)
Getting WebRTC and Websockets right in python is very tricky. If you've tried to wrap an LLM in a real-time audio layer then you know what I'm talking about.
That's where FastRTC comes in! It makes WebRTC and Websocket streams super easy with minimal code and overhead.
We now have a Deep Research for academia: SurveyX automatically writes academic surveys nearly indistinguishable from human-written ones 🔥
Researchers from Beijing and Shanghai just published the first application of a deep research system to academia: their algorithm, given a question, can give you a survey of all papers on the subject.
To make a research survey, you generally follow two steps, preparation (collect and organize papers) and writing (outline creation, writing, polishing). Researchers followed the same two steps and automated them.
🎯 For the preparation part, a key part is find all the important references on the given subject. Researchers first cast a wide net of all relevant papers. But then finding the really important ones is like distilling knowledge from a haystack of information. To solve this challenge, they built an “AttributeTree” object that structures key information from citations. Ablating these AttributeTrees significantly decreased structure and synthesis scores, so they were really useful!
📝 For the writing part, key was to get a synthesis that's both short and true. This is not easy to get with LLMs! So they used methods like LLM-based deduplication to shorten the too verbose listings made by LLMs, and RAG to grab original quotes instead of made-up ones.
As a result, their system outperforms previous approaches by far!
As assessed by LLM-judges, the quality score os SurveyX even approaches this of human experts, with 4.59/5 vs 4.75/5 🏆
SmolVLM-2 and SigLIP-2 are now part of transformers in dedicated releases!
They're added on top of the v4.49.0 release, and can be installed from the following tags: v4.49.0-SmolVLM-2 and v4.49.0-SigLIP-2.
This marks a new beginning for the release process of transformers. For the past five years, we've been doing monthly releases featuring many models (v4.49.0, the latest release, features 9 new architectures).
Starting with SmolVLM-2 & SigLIP2, we'll now additionally release tags supporting new models on a stable branch. These models are therefore directly available for use by installing from the tag itself. These tags will continue to be updated with fixes applied to these models.
Going forward, continue expecting software releases following semantic versioning: v4.50.0 will have ~10 new architectures compared to v4.49.0, as well as a myriad of new features, improvements and bug fixes. Accompanying these software releases, we'll release tags offering brand new models as fast as possible, to make them accessible to all immediately.
Google just released PaliGemma 2 Mix: new versatile instruction vision language models 🔥
> Three new models: 3B, 10B, 28B with res 224, 448 💙 > Can do vision language tasks with open-ended prompts, understand documents, and segment or detect anything 🤯
Less is More for Reasoning (LIMO): a 32B model fine-tuned with 817 examples can beat o1-preview on math reasoning! 🤯
Do we really need o1's huge RL procedure to see reasoning emerge? It seems not. Researchers from Shanghai Jiaotong University just demonstrated that carefully selected examples can boost math performance in large language models using SFT —no huge datasets or RL procedures needed.
Their procedure allows Qwen2.5-32B-Instruct to jump from 6.5% to 57% on AIME and from 59% to 95% on MATH, while using only 1% of the data in previous approaches.
⚡ The Less-is-More Reasoning Hypothesis: ‣ Minimal but precise examples that showcase optimal reasoning patterns matter more than sheer quantity ‣ Pre-training knowledge plus sufficient computational resources at inference levels up math skills
➡️ Core techniques: ‣ High-quality reasoning chains with self-verification steps ‣ 817 handpicked problems that encourage deeper reasoning ‣ Enough inference-time computation to allow extended reasoning
💪 Efficiency gains: ‣ Only 817 examples instead of 100k+ ‣ 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data
This really challenges the notion that SFT leads to memorization rather than generalization! And opens up reasoning to GPU-poor researchers 🚀
👀 Multimodal > OpenGVLab released InternVideo 2.5 Chat models, new video LMs with long context > AIDC released Ovis2 model family along with Ovis dataset, new vision LMs in different sizes (1B, 2B, 4B, 8B, 16B, 34B), with video and OCR support > ColQwenStella-2b is a multilingual visual retrieval model that is sota in it's size > Hoags-2B-Exp is a new multilingual vision LM with contextual reasoning, long context video understanding
💬 LLMs A lot of math models! > Open-R1 team released OpenR1-Math-220k large scale math reasoning dataset, along with Qwen2.5-220K-Math fine-tuned on the dataset, OpenR1-Qwen-7B > Nomic AI released new Nomic Embed multilingual retrieval model, a MoE with 500 params with 305M active params, outperforming other models > DeepScaleR-1.5B-Preview is a new DeepSeek-R1-Distill fine-tune using distributed RL on math > LIMO is a new fine-tune of Qwen2.5-32B-Instruct on Math
🗣️ Audio > Zonos-v0.1 is a new family of speech recognition models, which contains the model itself and embeddings
🖼️ Vision and Image Generation > We have ported DepthPro of Apple to transformers for your convenience! > illustrious-xl-v1.0 is a new illustration generation model
𝗚𝗿𝗲𝗮𝘁 𝗳𝗲𝗮𝘁𝘂𝗿𝗲 𝗮𝗹𝗲𝗿𝘁: you can now share agents to the Hub! 🥳🥳
And any agent pushed to Hub get a cool Space interface to directly chat with it.
This was a real technical challenge: for instance, serializing tools to export them meant that you needed to get all the source code for a tool, verify that it was standalone (not relying on external variables), and gathering all the packages required to make it run.