IBM Granite

Enterprise
company
Activity Feed

AI & ML interests

LLMs for language and code + Time series and geospatial foundation models

Recent Activity

ibm-granite's activity

reach-vb 
posted an update 16 days ago
view post
Post
3600
hey hey @mradermacher - VB from Hugging Face here, we'd love to onboard you over to our optimised xet backend! 💥

as you know we're in the process of upgrading our storage backend to xet (which helps us scale and offer blazingly fast upload/ download speeds too): https://huggingface.co/blog/xet-on-the-hub and now that we are certain that the backend can scale with even big models like Llama 4/ Qwen 3 - we;re moving to the next phase of inviting impactful orgs and users on the hub over as you are a big part of the open source ML community - we would love to onboard you next and create some excitement about it in the community too!

in terms of actual steps - it should be as simple as one of the org admins to join hf.co/join/xet - we'll take care of the rest.

p.s. you'd need to have a the latest hf_xet version of huggingface_hub lib but everything else should be the same: https://huggingface.co/docs/hub/storage-backends#using-xet-storage

p.p.s. this is fully backwards compatible so everything will work as it should! 🤗
·
clefourrier 
posted an update 16 days ago
view post
Post
567
Always surprised that so few people actually read the FineTasks blog, on
✨how to select training evals with the highest signal✨

If you're serious about training models without wasting compute on shitty runs, you absolutely should read it!!

An high signal eval actually tells you precisely, during training, how wel & what your model is learning, allowing you to discard the bad runs/bad samplings/...!

The blog covers in depth prompt choice, metrics, dataset, across languages/capabilities, and my fave section is "which properties should evals have"👌
(to know on your use case how to select the best evals for you)

Blog: HuggingFaceFW/blogpost-fine-tasks
  • 2 replies
·