Always surprised that so few people actually read the FineTasks blog, on ✨how to select training evals with the highest signal✨
If you're serious about training models without wasting compute on shitty runs, you absolutely should read it!!
An high signal eval actually tells you precisely, during training, how wel & what your model is learning, allowing you to discard the bad runs/bad samplings/...!
The blog covers in depth prompt choice, metrics, dataset, across languages/capabilities, and my fave section is "which properties should evals have"👌 (to know on your use case how to select the best evals for you)
New in smolagents v1.16.0: 🔍 Bing support in WebSearchTool 🐍 Custom functions & executor_kwargs in LocalPythonExecutor 🔧 Streaming GradioUI fixes 🌐 Local web agents via api_base & api_key 📚 Better docs
smolagents v1.14.0 is out! 🚀 🔌 MCPClient: A sleek new client for connecting to remote MCP servers, making integrations more flexible and scalable. 🪨 Amazon Bedrock: Native support for Bedrock-hosted models. SmolAgents is now more powerful, flexible, and enterprise-ready. 💼
If you've followed the progress of robotics in the past 18 months, you've likely noticed how robotics is increasingly becoming the next frontier that AI will unlock.
At Hugging Face—in robotics and across all AI fields—we believe in a future where AI and robots are open-source, transparent, and affordable; community-built and safe; hackable and fun. We've had so much mutual understanding and passion working with the Pollen Robotics team over the past year that we decided to join forces!
You can already find our open-source humanoid robot platform Reachy 2 on the Pollen website and the Pollen community and people here on the hub at pollen-robotics
We're so excited to build and share more open-source robots with the world in the coming months!
The new DeepSite space is really insane for vibe-coders enzostvs/deepsite
With the wave of vibe-coding-optimized LLMs like the latest open-source DeepSeek model (version V3-0324), you can basically prompt out-of-the-box and create any app and game in one-shot.
It feels so powerful to me, no more complex framework or under-the-hood prompt engineering to have a working text-to-app tool.
AI is eating the world and *open-source* AI is eating AI itself!
PS: and even more meta is that the DeepSite app and DeepSeek model are both fully open-source code => time to start recursively improve?
PPS: you still need some inference hosting unless you're running the 600B param model at home, so check the very nice list of HF Inference Providers for this model: deepseek-ai/DeepSeek-V3-0324
It's beating Claude 3.7 on (competitive) programming –a domain Anthropic has been historically really strong at– and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!
Gemma3 family is out! Reading the tech report, and this section was really interesting to me from a methods/scientific fairness pov.
Instead of doing over-hyped comparisons, they clearly state that **results are reported in a setup which is advantageous to their models**. (Which everybody does, but people usually don't say)
For a tech report, it makes a lot of sense to report model performance when used optimally! On leaderboards on the other hand, comparison will be apples to apples, but in a potentially unoptimal way for a given model family (like some user interact sub-optimally with models)
Also contains a cool section (6) on training data memorization rate too! Important to see if your model will output the training data it has seen as such: always an issue for privacy/copyright/... but also very much for evaluation!
Because if your model knows its evals by heart, you're not testing for generalization.
We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger 💪
Together with the models, we are releasing:
📊CodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots
🏆 IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi