LLHF

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

llhf's activity

Xenova 
posted an update 1 day ago
view post
Post
1612
Introducing Kokoro.js, a new JavaScript library for running Kokoro TTS, an 82 million parameter text-to-speech model, 100% locally in the browser w/ WASM. Powered by 🤗 Transformers.js. WebGPU support coming soon!
👉 npm i kokoro-js 👈

Try it out yourself: webml-community/kokoro-web
Link to models/samples: onnx-community/Kokoro-82M-ONNX

You can get started in just a few lines of code!
import { KokoroTTS } from "kokoro-js";

const tts = await KokoroTTS.from_pretrained(
  "onnx-community/Kokoro-82M-ONNX",
  { dtype: "q8" }, // fp32, fp16, q8, q4, q4f16
);

const text = "Life is like a box of chocolates. You never know what you're gonna get.";
const audio = await tts.generate(text,
  { voice: "af_sky" }, // See `tts.list_voices()`
);
audio.save("audio.wav");

Huge kudos to the Kokoro TTS community, especially taylorchu for the ONNX exports and Hexgrad for the amazing project! None of this would be possible without you all! 🤗

The model is also extremely resilient to quantization. The smallest variant is only 86 MB in size (down from the original 326 MB), with no noticeable difference in audio quality! 🤯
  • 2 replies
·
Xenova 
posted an update 17 days ago
Xenova 
posted an update about 1 month ago
view post
Post
3913
Introducing Moonshine Web: real-time speech recognition running 100% locally in your browser!
🚀 Faster and more accurate than Whisper
🔒 Privacy-focused (no data leaves your device)
⚡️ WebGPU accelerated (w/ WASM fallback)
🔥 Powered by ONNX Runtime Web and Transformers.js

Demo: webml-community/moonshine-web
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/moonshine-web
·
Xenova 
posted an update about 1 month ago
view post
Post
3061
Introducing TTS WebGPU: The first ever text-to-speech web app built with WebGPU acceleration! 🔥 High-quality and natural speech generation that runs 100% locally in your browser, powered by OuteTTS and Transformers.js. 🤗 Try it out yourself!

Demo: webml-community/text-to-speech-webgpu
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/text-to-speech-webgpu
Model: onnx-community/OuteTTS-0.2-500M (ONNX), OuteAI/OuteTTS-0.2-500M (PyTorch)
reach-vb 
posted an update about 1 month ago
view post
Post
4233
VLMs are going through quite an open revolution AND on-device friendly sizes:

1. Google DeepMind w/ PaliGemma2 - 3B, 10B & 28B: google/paligemma-2-release-67500e1e1dbfdd4dee27ba48

2. OpenGVLabs w/ InternVL 2.5 - 1B, 2B, 4B, 8B, 26B, 38B & 78B: https://huggingface.co/collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c

3. Qwen w/ Qwen 2 VL - 2B, 7B & 72B: Qwen/qwen2-vl-66cee7455501d7126940800d

4. Microsoft w/ FlorenceVL - 3B & 8B: https://huggingface.co/jiuhai

5. Moondream2 w/ 0.5B: https://huggingface.co/vikhyatk/

What a time to be alive! 🔥
Xenova 
posted an update about 2 months ago
view post
Post
3994
We just released Transformers.js v3.1 and you're not going to believe what's now possible in the browser w/ WebGPU! 🤯 Let's take a look:
🔀 Janus from Deepseek for unified multimodal understanding and generation (Text-to-Image and Image-Text-to-Text)
👁️ Qwen2-VL from Qwen for dynamic-resolution image understanding
🔢 JinaCLIP from Jina AI for general-purpose multilingual multimodal embeddings
🌋 LLaVA-OneVision from ByteDance for Image-Text-to-Text generation
🤸‍♀️ ViTPose for pose estimation
📄 MGP-STR for optical character recognition (OCR)
📈 PatchTST & PatchTSMixer for time series forecasting

That's right, everything running 100% locally in your browser (no data sent to a server)! 🔥 Huge for privacy!

Check out the release notes for more information. 👇
https://github.com/huggingface/transformers.js/releases/tag/3.1.0

Demo link (+ source code): webml-community/Janus-1.3B-WebGPU
reach-vb 
posted an update about 2 months ago
view post
Post
4100
Massive week for Open AI/ ML:

Mistral Pixtral & Instruct Large - ~123B, 128K context, multilingual, json + function calling & open weights
mistralai/Pixtral-Large-Instruct-2411
mistralai/Mistral-Large-Instruct-2411

Allen AI Tülu 70B & 8B - competive with claude 3.5 haiku, beats all major open models like llama 3.1 70B, qwen 2.5 and nemotron
allenai/tulu-3-models-673b8e0dc3512e30e7dc54f5
allenai/tulu-3-datasets-673b8df14442393f7213f372

Llava o1 - vlm capable of spontaneous, systematic reasoning, similar to GPT-o1, 11B model outperforms gemini-1.5-pro, gpt-4o-mini, and llama-3.2-90B-vision
Xkev/Llama-3.2V-11B-cot

Black Forest Labs Flux.1 tools - four new state of the art model checkpoints & 2 adapters for fill, depth, canny & redux, open weights
reach-vb/black-forest-labs-flux1-6743847bde9997dd26609817

Jina AI Jina CLIP v2 - general purpose multilingual and multimodal (text & image) embedding model, 900M params, 512 x 512 resolution, matroyoshka representations (1024 to 64)
jinaai/jina-clip-v2

Apple AIM v2 & CoreML MobileCLIP - large scale vision encoders outperform CLIP and SigLIP. CoreML optimised MobileCLIP models
apple/aimv2-6720fe1558d94c7805f7688c
apple/coreml-mobileclip

A lot more got released like, OpenScholar ( OpenScholar/openscholar-v1-67376a89f6a80f448da411a6), smoltalk ( HuggingFaceTB/smoltalk), Hymba ( nvidia/hymba-673c35516c12c4b98b5e845f), Open ASR Leaderboard ( hf-audio/open_asr_leaderboard) and much more..

Can't wait for the next week! 🤗
SaylorTwift 
posted an update about 2 months ago
Xenova 
posted an update 2 months ago
view post
Post
5633
Have you tried out 🤗 Transformers.js v3? Here are the new features:
⚡ WebGPU support (up to 100x faster than WASM)
🔢 New quantization formats (dtypes)
🏛 120 supported architectures in total
📂 25 new example projects and templates
🤖 Over 1200 pre-converted models
🌐 Node.js (ESM + CJS), Deno, and Bun compatibility
🏡 A new home on GitHub and NPM

Get started with npm i @huggingface/transformers.

Learn more in our blog post: https://huggingface.co/blog/transformersjs-v3
  • 3 replies
·
ArthurZ 
posted an update 2 months ago
reach-vb 
posted an update 2 months ago
view post
Post
4387
What a brilliant week for Open Source AI!

Qwen 2.5 Coder by Alibaba - 0.5B / 1.5B / 3B / 7B / 14B/ 32B (Base + Instruct) Code generation LLMs, with 32B tackling giants like Gemnini 1.5 Pro, Claude Sonnet
Qwen/qwen25-coder-66eaa22e6f99801bf65b0c2f

LLM2CLIP from Microsoft - Leverage LLMs to train ultra-powerful CLIP models! Boosts performance over the previous SOTA by ~17%
microsoft/llm2clip-672323a266173cfa40b32d4c

Athene v2 Chat & Agent by NexusFlow - SoTA general LLM fine-tuned from Qwen 2.5 72B excels at Chat + Function Calling/ JSON/ Agents
Nexusflow/athene-v2-6735b85e505981a794fb02cc

Orca Agent Instruct by Microsoft - 1 million instruct pairs covering text editing, creative writing, coding, reading comprehension, etc - permissively licensed
microsoft/orca-agentinstruct-1M-v1

Ultravox by FixieAI - 70B/ 8B model approaching GPT4o level, pick any LLM, train an adapter with Whisper as Audio Encoder
reach-vb/ultravox-audio-language-model-release-67373b602af0a52b2a88ae71

JanusFlow 1.3 by DeepSeek - Next iteration of their Unified MultiModal LLM Janus with RectifiedFlow
deepseek-ai/JanusFlow-1.3B

Common Corpus by Pleais - 2,003,039,184,047 multilingual, commercially permissive and high quality tokens!
PleIAs/common_corpus

I'm sure I missed a lot, can't wait for the next week!

Put down in comments what I missed! 🤗
reach-vb 
posted an update 2 months ago
view post
Post
1642
Smol TTS models are here! OuteTTS-0.1-350M - Zero shot voice cloning, built on LLaMa architecture, CC-BY license! 🔥

> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp ⚡

Three-step approach to TTS:

> Audio tokenization using WavTokenizer (75 tok per second)
> CTC forced alignment for word-to-audio token mapping
> Structured prompt creation w/ transcription, duration, audio tokens

The model is extremely impressive for 350M parameters! Kudos to the
OuteAI team on such a brilliant feat - I'd love to see this be applied on larger data and smarter backbones like SmolLM 🤗

Check out the models here: OuteAI/outetts-6728aa71a53a076e4ba4817c