AI & ML interests

Accelerating DL

Recent Activity

pagezyhf 
posted an update 4 days ago
view post
Post
1540
In case you missed it, Hugging Face expanded its collaboration with Azure a few weeks ago with a curated catalog of 10,000 models, accessible from Azure AI Foundry and Azure ML!

@alvarobartt cooked during these last days to prepare the one and only documentation you need, if you wanted to deploy Hugging Face models on Azure. It comes with an FAQ, great guides and examples on how to deploy VLMs, LLMs, smolagents and more to come very soon.

We need your feedback: come help us and let us know what else you want to see, which model we should add to the collection, which model task we should prioritize adding, what else we should build a tutorial for. You’re just an issue away on our GitHub repo!

https://huggingface.co/docs/microsoft-azure/index
jeffboudier 
posted an update 9 days ago
view post
Post
352
AMD summer hackathons are here!
A chance to get hands-on with MI300X GPUs and accelerate models.
🇫🇷 Paris - Station F - July 5-6
🇮🇳 Mumbai - July 12-13
🇮🇳 Bengaluru - July 19-20

Hugging Face and GPU Mode will be on site and on July 6 in Paris @ror will share lessons learned while building new kernels to accelerate Llama 3.1 405B on ROCm

Register to Paris event: https://lu.ma/fmvdjmur?tk=KeAbiP
All dates: https://lu.ma/calendar/cal-3sxhD5FdxWsMDIz
pagezyhf 
posted an update 10 days ago
view post
Post
3156
Hackathons in Paris on July 5th and 6th!

Hugging Face just wrapped 4 months of deep work with AMD to push kernel-level optimization on their MI300X GPUs. Now, it's time to share everything we learned.

Join us in Paris at STATION F for a hands-on weekend of workshops and a hackathon focused on making open-source LLMs faster and more efficient on AMD.

Prizes, amazing host speakers, ... if you want more details, navigate to https://lu.ma/fmvdjmur!
  • 2 replies
·
pagezyhf 
posted an update 17 days ago
jeffboudier 
posted an update 22 days ago
view post
Post
1653
Today we launched Training Cluster as a Service, to make the new DGX Cloud Lepton supercloud easily accessible to AI researchers.

Hugging Face will collaborate with NVIDIA to provision and set up GPU training clusters to make them available for the duration of training runs.

Hugging Face organizations can sign up here: https://huggingface.co/training-cluster
jeffboudier 
posted an update about 1 month ago
jeffboudier 
posted an update about 1 month ago
regisss 
posted an update about 2 months ago
jeffboudier 
posted an update about 2 months ago
view post
Post
2590
Transcribing 1 hour of audio for less than $0.01 🤯

@mfuntowicz cooked with 8x faster Whisper speech recognition - whisper-large-v3-turbo transcribes at 100x real time on a $0.80/hr L4 GPU!

How they did it: https://huggingface.co/blog/fast-whisper-endpoints

1-click deploy with HF Inference Endpoints: https://endpoints.huggingface.co/new?repository=openai%2Fwhisper-large-v3-turbo&vendor=aws&region=us-east&accelerator=gpu&instance_id=aws-us-east-1-nvidia-l4-x1&task=automatic-speech-recognition&no_suggested_compute=true
jeffboudier 
posted an update about 2 months ago
pagezyhf 
posted an update 2 months ago
view post
Post
1995
If you haven't had the chance to test the latest open model from Meta, Llama 4 Maverick, go try it on AMD MI 300 on Hugging Face!

amd/llama4-maverick-17b-128e-mi-amd
jeffboudier 
posted an update 3 months ago
view post
Post
2208
Llama4 is out and Scout is already on the Dell Enterprise Hub to deploy on Dell systems 👉 dell.huggingface.co
jeffboudier 
posted an update 3 months ago
view post
Post
1572
Enterprise orgs now enable serverless Inference Providers for all members
- includes $2 free usage per org member (e.g. an Enterprise org with 1,000 members share $2,000 free credit each month)
- admins can set a monthly spend limit for the entire org
- works today with Together, fal, Novita, Cerebras and HF Inference.

Here's the doc to bill Inference Providers usage to your org: https://huggingface.co/docs/inference-providers/pricing#organization-billing
  • 2 replies
·
regisss 
posted an update 5 months ago
view post
Post
1758
Nice paper comparing the fp8 inference efficiency of Nvidia H100 and Intel Gaudi2: An Investigation of FP8 Across Accelerators for LLM Inference (2502.01070)

The conclusion is interesting: "Our findings highlight that the Gaudi 2, by leveraging FP8, achieves higher throughput-to-power efficiency during LLM inference"

One aspect of AI hardware accelerators that is often overlooked is how they consume less energy than GPUs. It's nice to see researchers starting carrying out experiments to measure this!

Gaudi3 results soon...