We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger 💪
Together with the models, we are releasing:
📊CodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots
🏆 IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi
For Inference Providers who have built support for our Billing API (currently: Fal, Novita, HF-Inference – with more coming soon), we've started enabling Pay as you go (=PAYG)
What this means is that you can use those Inference Providers beyond the free included credits, and they're charged to your HF account.
You can see it on this view: any provider that does not have a "Billing disabled" badge, is PAYG-compatible.
The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch 💪
What’s new compared to existing reasoning datasets?
♾ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.
🐳 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.
📀 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.
⏳ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that can’t be verified with a rules-based parser)
📊 We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!
🧪 Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.
🧠 Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.
🔥 Step 3: show we can go from base model -> SFT -> RL via multi-stage training.