osamanaguib's picture
Update README.md
4e4be71 verified
---
library_name: transformers
tags: [sentiment-analysis, multilingual, lora, xlm-roberta, peft]
---
# Trilingual Sentiment LoRA Model
## Model Summary
Trilingual Sentiment LoRA is a fine-tuned XLM-RoBERTa model optimized for multilingual sentiment classification across **Arabic**, **English**, and **Spanish** texts.
It applies **Low-Rank Adaptation (LoRA)** using the **PEFT framework**, enabling efficient fine-tuning while maintaining robust multilingual understanding.
## Model Details
- **Developed by:** Osama Naguib
- **Funded by:** Ahmed Zaky
- **Model Type:** Sequence Classification
- **Languages:** Arabic, English, Spanish
- **License:** MIT
- **Finetuned From:** xlm-roberta-base
- **Frameworks:** Transformers, Datasets, PEFT, PyTorch
## Model Sources
- **Repository:** https://huggingface.co/osamanaguib/trilingual-sentiment-lora
- **Base Model:** https://huggingface.co/xlm-roberta-base
## Intended Uses
### Direct Use
This model can be used directly for sentiment classification on multilingual (EN/ES/AR) text data.
Example labels:
- 0 β†’ Negative
- 1 β†’ Neutral
- 2 β†’ Positive
Example use:
library_name: transformers
tags: [sentiment-analysis, multilingual, lora, xlm-roberta, peft]
---
# Trilingual Sentiment LoRA Model
## Model Summary
Trilingual Sentiment LoRA is a fine-tuned XLM-RoBERTa model optimized for multilingual sentiment classification across **Arabic**, **English**, and **Spanish** texts.
It applies **Low-Rank Adaptation (LoRA)** using the **PEFT framework**, enabling efficient fine-tuning while maintaining robust multilingual understanding.
## Model Details
- **Developed by:** Osama Naguib
- **Funded by:** Ahmed Zaky
- **Model Type:** Sequence Classification
- **Languages:** Arabic, English, Spanish
- **License:** MIT
- **Finetuned From:** xlm-roberta-base
- **Frameworks:** Transformers, Datasets, PEFT, PyTorch
## Model Sources
- **Repository:** https://huggingface.co/osamanaguib/trilingual-sentiment-lora
- **Base Model:** https://huggingface.co/xlm-roberta-base
## Intended Uses
### Direct Use
This model can be used directly for sentiment classification on multilingual (EN/ES/AR) text data.
Example labels:
- 0 β†’ Negative
- 1 β†’ Neutral
- 2 β†’ Positive
Example use: