See axolotl config
axolotl version: 0.8.0.dev0
base_model: paloalma/Qwen-2.5-72B-Instruct-Pruned
hub_model_id: paloalma/Le_Triomphant_ECE_TW3_V2
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
datasets:
- path: paloalma/Reasoning-DeepSeek-R1-Distilled-1.4M-Alpaca-20K
type: alpaca
val_set_size: 0.1
output_dir: ./outputs/deepseek_finetune
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false # Changed from true to false
adapter: qlora
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
chat_template: alpaca
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
saves_per_epoch: 3
learning_rate: 0.0002
tf32: true
gradient_checkpointing: true
deepspeed: deepspeed_configs/zero3.json
Le_Triomphant_ECE_TW3_V2
This model is a fine-tuned version of paloalma/Qwen-2.5-72B-Instruct-Pruned on the paloalma/Reasoning-DeepSeek-R1-Distilled-1.4M-Alpaca-20K dataset. It achieves the following results on the evaluation set:
- Loss: 0.4271
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- total_eval_batch_size: 6
- optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 8
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4347 | 0.9973 | 281 | 0.4271 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for paloalma/Le_Triomphant_ECE_TW3_V2
Base model
Qwen/Qwen2.5-72B
Finetuned
Qwen/Qwen2.5-72B-Instruct
Finetuned
paloalma/Qwen-2.5-72B-Instruct-Pruned