SentenceTransformer based on FacebookAI/xlm-roberta-base

This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: FacebookAI/xlm-roberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("panalexeu/xlm-roberta-ua-distilled-full")
# Run inference
sentences = [
    "You'd better consult the doctor.",
    'Краще проконсультуйся у лікаря.',
    'Їх позначають як Aufklärungsfahrzeug 93 та Aufklärungsfahrzeug 97 відповідно.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

Metric Value
negative_mse -1.1089

Semantic Similarity

Metric sts17-en-en sts17-en-ua sts17-ua-ua
pearson_cosine 0.6785 0.5926 0.6159
spearman_cosine 0.7308 0.6198 0.6446

Training Details

Training Dataset

Unnamed Dataset

  • Size: 523,982 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 5 tokens
    • mean: 21.11 tokens
    • max: 254 tokens
    • min: 4 tokens
    • mean: 23.15 tokens
    • max: 293 tokens
    • size: 768 elements
  • Samples:
    english non_english label
    Her real name is Lydia (リディア, Ridia), but she was mistaken for a boy and called Ricard. Справжнє ім'я — Лідія, але її помилково сприйняли за хлопчика і назвали Рікард. [0.15217968821525574, -0.17830222845077515, -0.12677159905433655, 0.22082313895225525, 0.40085524320602417, ...]
    (Applause) So he didn't just learn water. (Аплодисменти) Він не тільки вивчив слово "вода". [-0.1058148592710495, -0.08846072107553482, -0.2684604823589325, -0.105219267308712, 0.3050258755683899, ...]
    It is tightly integrated with SAM, the Storage and Archive Manager, and hence is often referred to as SAM-QFS. Вона тісно інтегрована з SAM (Storage and Archive Manager), тому часто називається SAM-QFS. [0.03270340710878372, -0.45798248052597046, -0.20090211927890778, 0.006579531356692314, -0.03178019821643829, ...]
  • Loss: MSELoss

Evaluation Dataset

Unnamed Dataset

  • Size: 3,838 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 5 tokens
    • mean: 15.64 tokens
    • max: 143 tokens
    • min: 5 tokens
    • mean: 16.98 tokens
    • max: 148 tokens
    • size: 768 elements
  • Samples:
    english non_english label
    I have lost my wallet. Я загубив гаманець. [-0.11186987161636353, -0.03419225662946701, -0.31304317712783813, 0.0838347002863884, 0.108644500374794, ...]
    It's a pharmaceutical product. Це фармацевтичний продукт. [0.04133488982915878, -0.4182000756263733, -0.30786487460136414, -0.09351564198732376, -0.023946482688188553, ...]
    We've all heard of the Casual Friday thing. Всі ми чули про «джинсову п’ятницю» (вільна форма одягу). [-0.10697802156209946, 0.21002227067947388, -0.2513434886932373, -0.3718843460083008, 0.06871984899044037, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 3
  • num_train_epochs: 4
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 3
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss mse-en-ua_negative_mse sts17-en-en_spearman_cosine sts17-en-ua_spearman_cosine sts17-ua-ua_spearman_cosine
0.0938 1024 0.3281 0.0297 -2.9592 0.2325 0.1547 0.2265
0.1876 2048 0.1136 0.2042 -21.6693 0.0553 0.0429 0.2442
0.2814 3072 0.1008 0.0273 -2.7461 0.2666 0.0758 0.2613
0.3752 4096 0.0843 0.0243 -2.4623 0.2541 0.0012 0.3680
0.4690 5120 0.0756 0.0216 -2.2095 0.3933 0.2535 0.4342
0.5628 6144 0.0661 0.0187 -1.9539 0.5739 0.4222 0.5056
0.6566 7168 0.0579 0.0164 -1.7513 0.6184 0.4897 0.5826
0.7504 8192 0.0526 0.0153 -1.6546 0.6219 0.4568 0.5842
0.8442 9216 0.0488 0.0142 -1.5525 0.6160 0.5012 0.5884
0.9380 10240 0.046 0.0135 -1.4957 0.6361 0.5046 0.5969
1.0318 11264 0.0437 0.0130 -1.4506 0.6453 0.5093 0.5939
1.1256 12288 0.0419 0.0125 -1.4049 0.6403 0.5054 0.6020
1.2194 13312 0.0404 0.0122 -1.3794 0.6654 0.5442 0.6182
1.3132 14336 0.0394 0.0118 -1.3434 0.6800 0.5790 0.6291
1.4070 15360 0.0383 0.0115 -1.3184 0.6836 0.5805 0.6301
1.5008 16384 0.0375 0.0114 -1.3067 0.6742 0.5555 0.6055
1.5946 17408 0.0368 0.0111 -1.2864 0.6909 0.5765 0.6256
1.6884 18432 0.036 0.0109 -1.2633 0.6875 0.5801 0.6178
1.7822 19456 0.0353 0.0107 -1.2490 0.7060 0.5959 0.6322
1.8760 20480 0.035 0.0106 -1.2357 0.7127 0.6047 0.6389
1.9698 21504 0.0344 0.0105 -1.2265 0.7265 0.6233 0.6459
2.0636 22528 0.0335 0.0103 -1.2108 0.7184 0.6151 0.6438
2.1574 23552 0.0327 0.0103 -1.2101 0.7122 0.6074 0.6427
2.2512 24576 0.0324 0.0102 -1.1972 0.7232 0.6174 0.6447
2.3450 25600 0.0322 0.0100 -1.1813 0.7217 0.6166 0.6457
2.4388 26624 0.032 0.0099 -1.1745 0.7308 0.6272 0.6534
2.5326 27648 0.0316 0.0098 -1.1673 0.7289 0.6125 0.6441
2.6264 28672 0.0314 0.0098 -1.1622 0.7222 0.6105 0.6365
2.7202 29696 0.0312 0.0097 -1.1593 0.7175 0.6121 0.6348
2.8140 30720 0.0308 0.0096 -1.1457 0.7204 0.6044 0.6377
2.9078 31744 0.0307 0.0095 -1.1411 0.7230 0.6175 0.6353
3.0016 32768 0.0305 0.0095 -1.1414 0.7130 0.6052 0.6340
3.0954 33792 0.0296 0.0095 -1.1360 0.7234 0.6160 0.6411
3.1892 34816 0.0295 0.0094 -1.1317 0.7220 0.6131 0.6396
3.2830 35840 0.0294 0.0094 -1.1306 0.7315 0.6167 0.6505
3.3768 36864 0.0293 0.0094 -1.1263 0.7219 0.6089 0.6450
3.4706 37888 0.0292 0.0093 -1.1225 0.7236 0.6141 0.6451
3.5644 38912 0.0291 0.0093 -1.1204 0.7331 0.6179 0.6460
3.6582 39936 0.029 0.0092 -1.1147 0.7226 0.6127 0.6406
3.7520 40960 0.029 0.0092 -1.1118 0.7245 0.6184 0.6425
3.8458 41984 0.0289 0.0092 -1.1102 0.7279 0.6179 0.6465
3.9396 43008 0.0288 0.0092 -1.1099 0.7298 0.6191 0.6438
3.9997 43664 - 0.0092 -1.1089 0.7308 0.6198 0.6446

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
35
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for panalexeu/xlm-roberta-ua-distilled

Finetuned
(3013)
this model

Space using panalexeu/xlm-roberta-ua-distilled 1

Evaluation results