Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConceptBed: Evaluating Concept Learning Abilities of Text-to-Image Diffusion Models
The ability to understand visual concepts and replicate and compose these concepts from images is a central goal for computer vision. Recent advances in text-to-image (T2I) models have lead to high definition and realistic image quality generation by learning from large databases of images and their descriptions. However, the evaluation of T2I models has focused on photorealism and limited qualitative measures of visual understanding. To quantify the ability of T2I models in learning and synthesizing novel visual concepts, we introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts, 5K unique concept compositions, and 33K composite text prompts. Along with the dataset, we propose an evaluation metric, Concept Confidence Deviation (CCD), that uses the confidence of oracle concept classifiers to measure the alignment between concepts generated by T2I generators and concepts contained in ground truth images. We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions. Our human study shows that CCD is highly correlated with human understanding of concepts. Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome.
Enhancing Text-to-SQL Translation for Financial System Design
Text-to-SQL, the task of translating natural language questions into SQL queries, is part of various business processes. Its automation, which is an emerging challenge, will empower software practitioners to seamlessly interact with relational databases using natural language, thereby bridging the gap between business needs and software capabilities. In this paper, we consider Large Language Models (LLMs), which have achieved state of the art for various NLP tasks. Specifically, we benchmark Text-to-SQL performance, the evaluation methodologies, as well as input optimization (e.g., prompting). In light of the empirical observations that we have made, we propose two novel metrics that were designed to adequately measure the similarity between SQL queries. Overall, we share with the community various findings, notably on how to select the right LLM on Text-to-SQL tasks. We further demonstrate that a tree-based edit distance constitutes a reliable metric for assessing the similarity between generated SQL queries and the oracle for benchmarking Text2SQL approaches. This metric is important as it relieves researchers from the need to perform computationally expensive experiments such as executing generated queries as done in prior works. Our work implements financial domain use cases and, therefore contributes to the advancement of Text2SQL systems and their practical adoption in this domain.
Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming
The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.
LaajMeter: A Framework for LaaJ Evaluation
Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.
Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation
Legacy software systems, written in outdated languages like MUMPS and mainframe assembly, pose challenges in efficiency, maintenance, staffing, and security. While LLMs offer promise for modernizing these systems, their ability to understand legacy languages is largely unknown. This paper investigates the utilization of LLMs to generate documentation for legacy code using two datasets: an electronic health records (EHR) system in MUMPS and open-source applications in IBM mainframe Assembly Language Code (ALC). We propose a prompting strategy for generating line-wise code comments and a rubric to evaluate their completeness, readability, usefulness, and hallucination. Our study assesses the correlation between human evaluations and automated metrics, such as code complexity and reference-based metrics. We find that LLM-generated comments for MUMPS and ALC are generally hallucination-free, complete, readable, and useful compared to ground-truth comments, though ALC poses challenges. However, no automated metrics strongly correlate with comment quality to predict or measure LLM performance. Our findings highlight the limitations of current automated measures and the need for better evaluation metrics for LLM-generated documentation in legacy systems.
OSS-Bench: Benchmark Generator for Coding LLMs
In light of the rapid adoption of AI coding assistants, LLM-assisted development has become increasingly prevalent, creating an urgent need for robust evaluation of generated code quality. Existing benchmarks often require extensive manual effort to create static datasets, rely on indirect or insufficiently challenging tasks, depend on non-scalable ground truth, or neglect critical low-level security evaluations, particularly memory-safety issues. In this work, we introduce OSS-Bench, a benchmark generator that automatically constructs large-scale, live evaluation tasks from real-world open-source software. OSS-Bench replaces functions with LLM-generated code and evaluates them using three natural metrics: compilability, functional correctness, and memory safety, leveraging robust signals like compilation failures, test-suite violations, and sanitizer alerts as ground truth. In our evaluation, the benchmark, instantiated as OSS-Bench(php) and OSS-Bench(sql), profiles 17 diverse LLMs, revealing insights such as intra-family behavioral patterns and inconsistencies between model size and performance. Our results demonstrate that OSS-Bench mitigates overfitting by leveraging the evolving complexity of OSS and highlights LLMs' limited understanding of low-level code security via extended fuzzing experiments. Overall, OSS-Bench offers a practical and scalable framework for benchmarking the real-world coding capabilities of LLMs.
FLEX: Expert-level False-Less EXecution Metric for Reliable Text-to-SQL Benchmark
Text-to-SQL technology has become crucial for translating natural language into SQL queries in various industries, enabling non-technical users to perform complex data operations. The need for accurate evaluation methods has increased as these systems have grown more sophisticated. However, we found that the Execution Accuracy (EX), the most promising evaluation metric, still shows a substantial portion of false positives and negatives compared to human evaluation. Thus, this paper introduces FLEX (False-Less EXecution), a novel approach to evaluating text-to-SQL systems using large language models (LLMs) to emulate human expert-level evaluation of SQL queries. Our method shows significantly higher agreement with human expert judgments, improving Cohen's kappa from 61 to 78.17. Re-evaluating top-performing models on the Spider and BIRD benchmarks using FLEX reveals substantial shifts in performance rankings, with an average performance decrease of 3.15 due to false positive corrections and an increase of 6.07 from addressing false negatives. This work contributes to a more accurate and nuanced evaluation of text-to-SQL systems, potentially reshaping our understanding of state-of-the-art performance in this field.
State of What Art? A Call for Multi-Prompt LLM Evaluation
Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
Evaluating Cross-Domain Text-to-SQL Models and Benchmarks
Text-to-SQL benchmarks play a crucial role in evaluating the progress made in the field and the ranking of different models. However, accurately matching a model-generated SQL query to a reference SQL query in a benchmark fails for various reasons, such as underspecified natural language queries, inherent assumptions in both model-generated and reference queries, and the non-deterministic nature of SQL output under certain conditions. In this paper, we conduct an extensive study of several prominent cross-domain text-to-SQL benchmarks and re-evaluate some of the top-performing models within these benchmarks, by both manually evaluating the SQL queries and rewriting them in equivalent expressions. Our evaluation reveals that attaining a perfect performance on these benchmarks is unfeasible due to the multiple interpretations that can be derived from the provided samples. Furthermore, we find that the true performance of the models is underestimated and their relative performance changes after a re-evaluation. Most notably, our evaluation reveals a surprising discovery: a recent GPT4-based model surpasses the gold standard reference queries in the Spider benchmark in our human evaluation. This finding highlights the importance of interpreting benchmark evaluations cautiously, while also acknowledging the critical role of additional independent evaluations in driving advancements in the field.
Efficiency-Effectiveness Reranking FLOPs for LLM-based Rerankers
Large Language Models (LLMs) have recently been applied to reranking tasks in information retrieval, achieving strong performance. However, their high computational demands often hinder practical deployment. Existing studies evaluate the efficiency of LLM-based rerankers using proxy metrics such as latency, the number of forward passes, input tokens, and output tokens. However, these metrics depend on hardware and running-time choices (\eg parallel or not, batch size, etc), and often fail to account for model size, making it difficult to interpret and obscuring the evaluation of the efficiency-effectiveness tradeoff. To address this issue, we propose E2R-FLOPs, for LLM-based rerankers: ranking metrics per PetaFLOP (RPP) for relevance per compute and queries per PetaFLOP (QPP) for hardware-agnostic throughput. Companied with the new metrics, an interpretable FLOPs estimator is built to estimate the FLOPs of an LLM-based reranker even without running any experiments. Based on the proposed metrics, we conduct comprehensive experiments to evaluate a wide range of LLM-based rerankers with different architecture, studying the efficiency-effectiveness trade-off and bringing this issue to the attention of the research community.
OOP: Object-Oriented Programming Evaluation Benchmark for Large Language Models
Advancing automated programming necessitates robust and comprehensive code generation benchmarks, yet current evaluation frameworks largely neglect object-oriented programming (OOP) in favor of functional programming (FP), e.g., HumanEval and MBPP. To address this, our study introduces a pioneering OOP-focused benchmark, featuring 431 Python programs that encompass essential OOP concepts and features like classes and encapsulation methods. We propose a novel evaluation metric, pass@o, tailored for OOP, enhancing traditional pass@k measures. Our evaluation of 23 leading large language models (LLMs), including both general and code-specialized models, reveals three key insights: 1) pass@o offers a more relevant and comprehensive assessment for OOP code generation; 2) Despite excelling in FP, code-specialized LLMs like WizardCoder lag in OOP compared to models like ChatGPT; 3) The poor performance of all advanced LLMs on our OOP benchmark highlights a critical need for improvements in this field. Our benchmark and scripts are publicly released at: https://github.com/alphadl/OOP-eval.
A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
Establishing fair and robust benchmarks is essential for evaluating intelligent code generation by large language models (LLMs). Our survey of 35 existing benchmarks uncovers three major imbalances: 85.7% focus on a single programming language; 94.3% target only function-level or statement-level tasks; and over 80% include fewer than ten test cases on average. To address these gaps, we propose MultiOOP, a multi-language object-oriented programming benchmark covering six popular languages (Python, PHP, C++, C#, Java, JavaScript) with 267 tasks per language. We design a translator that extends an existing single-language OOP benchmark and the pass@o metric to a multilingual setting. Moreover, we propose an automated framework for augmenting test cases to ensure the reliability of the evaluation results. We evaluate 14 mainstream LLMs under zero-shot prompting and report three key findings: 1) Substantial performance degradation: pass@1 scores on MultiOOP drop by up to 65.6 percentage points compared to function-level tasks (e.g., HumanEval). 2) Cross-language variability: GPT-4o mini achieves pass@1 of 48.06% in Python but only 0.12%-15.26% in other languages, indicating limited multilingual generalization. 3) Conceptual gaps: pass@o scores are consistently 1.1-19.2 points lower than pass@k, demonstrating that LLMs often generate executable code without fully capturing core OOP concepts. Our benchmark, metric extensions, and evaluation scripts will be publicly released to foster a more balanced and comprehensive assessment of LLMs in object-oriented code generation. Our code and data will be released at https://github.com/alphadl/OOP-eval and https://huggingface.co/datasets/codeai-dteam/MultiOOP respectively.
SpreadsheetBench: Towards Challenging Real World Spreadsheet Manipulation
We introduce SpreadsheetBench, a challenging spreadsheet manipulation benchmark exclusively derived from real-world scenarios, designed to immerse current large language models (LLMs) in the actual workflow of spreadsheet users. Unlike existing benchmarks that rely on synthesized queries and simplified spreadsheet files, SpreadsheetBench is built from 912 real questions gathered from online Excel forums, which reflect the intricate needs of users. The associated spreadsheets from the forums contain a variety of tabular data such as multiple tables, non-standard relational tables, and abundant non-textual elements. Furthermore, we propose a more reliable evaluation metric akin to online judge platforms, where multiple spreadsheet files are created as test cases for each instruction, ensuring the evaluation of robust solutions capable of handling spreadsheets with varying values. Our comprehensive evaluation of various LLMs under both single-round and multi-round inference settings reveals a substantial gap between the state-of-the-art (SOTA) models and human performance, highlighting the benchmark's difficulty.
RevisEval: Improving LLM-as-a-Judge via Response-Adapted References
With significant efforts in recent studies, LLM-as-a-Judge has become a cost-effective alternative to human evaluation for assessing the text generation quality in a wide range of tasks. However, there still remains a reliability gap between LLM-as-a-Judge and human evaluation. One important reason is the lack of guided oracles in the evaluation process. Motivated by the role of reference pervasively used in classic text evaluation, we introduce RevisEval, a novel text generation evaluation paradigm via the response-adapted references. RevisEval is driven by the key observation that an ideal reference should maintain the necessary relevance to the response to be evaluated. Specifically, RevisEval leverages the text revision capabilities of large language models (LLMs) to adaptively revise the response, then treat the revised text as the reference (response-adapted reference) for the subsequent evaluation. Extensive experiments demonstrate that RevisEval outperforms traditional reference-free and reference-based evaluation paradigms that use LLM-as-a-Judge across NLG tasks and open-ended instruction-following tasks. More importantly, our response-adapted references can further boost the classical text metrics, e.g., BLEU and BERTScore, compared to traditional references and even rival the LLM-as-a-Judge. A detailed analysis is also conducted to confirm RevisEval's effectiveness in bias reduction, the impact of inference cost, and reference relevance.
Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models
The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.
τ-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains
Existing benchmarks do not test language agents on their interaction with human users or ability to follow domain-specific rules, both of which are vital for deploying them in real world applications. We propose tau-bench, a benchmark emulating dynamic conversations between a user (simulated by language models) and a language agent provided with domain-specific API tools and policy guidelines. We employ an efficient and faithful evaluation process that compares the database state at the end of a conversation with the annotated goal state. We also propose a new metric (pass^k) to evaluate the reliability of agent behavior over multiple trials. Our experiments show that even state-of-the-art function calling agents (like gpt-4o) succeed on <50% of the tasks, and are quite inconsistent (pass^8 <25% in retail). Our findings point to the need for methods that can improve the ability of agents to act consistently and follow rules reliably.
LV-Eval: A Balanced Long-Context Benchmark with 5 Length Levels Up to 256K
State-of-the-art large language models (LLMs) are now claiming remarkable supported context lengths of 256k or even more. In contrast, the average context lengths of mainstream benchmarks are insufficient (5k-21k), and they suffer from potential knowledge leakage and inaccurate metrics, resulting in biased evaluation. This paper introduces LV-Eval, a challenging long-context benchmark with five length levels (16k, 32k, 64k, 128k, and 256k) reaching up to 256k words. LV-Eval features two main tasks, single-hop QA and multi-hop QA, comprising 11 bilingual datasets. The design of LV-Eval has incorporated three key techniques, namely confusing facts insertion, keyword and phrase replacement, and keyword-recall-based metric design. The advantages of LV-Eval include controllable evaluation across different context lengths, challenging test instances with confusing facts, mitigated knowledge leakage, and more objective evaluations. We evaluate 10 LLMs on LV-Eval and conduct ablation studies on the techniques used in LV-Eval construction. The results reveal that: (i) Commercial LLMs generally outperform open-source LLMs when evaluated within length levels shorter than their claimed context length. However, their overall performance is surpassed by open-source LLMs with longer context lengths. (ii) Extremely long-context LLMs, such as Yi-6B-200k, exhibit a relatively gentle degradation of performance, but their absolute performances may not necessarily be higher than those of LLMs with shorter context lengths. (iii) LLMs' performances can significantly degrade in the presence of confusing information, especially in the pressure test of "needle in a haystack". (iv) Issues related to knowledge leakage and inaccurate metrics introduce bias in evaluation, and these concerns are alleviated in LV-Eval. All datasets and evaluation codes are released at: https://github.com/infinigence/LVEval.
Revolutionizing Database Q&A with Large Language Models: Comprehensive Benchmark and Evaluation
The development of Large Language Models (LLMs) has revolutionized Q&A across various industries, including the database domain. However, there is still a lack of a comprehensive benchmark to evaluate the capabilities of different LLMs and their modular components in database Q&A. To this end, we introduce DQA, the first comprehensive database Q&A benchmark. DQA features an innovative LLM-based method for automating the generation, cleaning, and rewriting of database Q&A, resulting in over 240,000 Q&A pairs in English and Chinese. These Q&A pairs cover nearly all aspects of database knowledge, including database manuals, database blogs, and database tools. This inclusion allows for additional assessment of LLMs' Retrieval-Augmented Generation (RAG) and Tool Invocation Generation (TIG) capabilities in the database Q&A task. Furthermore, we propose a comprehensive LLM-based database Q&A testbed on DQA. This testbed is highly modular and scalable, with both basic and advanced components like Question Classification Routing (QCR), RAG, TIG, and Prompt Template Engineering (PTE). Besides, DQA provides a complete evaluation pipeline, featuring diverse metrics and a standardized evaluation process to ensure comprehensiveness, accuracy, and fairness. We use DQA to evaluate the database Q&A capabilities under the proposed testbed comprehensively. The evaluation reveals findings like (i) the strengths and limitations of nine different LLM-based Q&A bots and (ii) the performance impact and potential improvements of various service components (e.g., QCR, RAG, TIG). We hope our benchmark and findings will better guide the future development of LLM-based database Q&A research.
Towards Realistic Evaluation of Commit Message Generation by Matching Online and Offline Settings
Commit message generation (CMG) is a crucial task in software engineering that is challenging to evaluate correctly. When a CMG system is integrated into the IDEs and other products at JetBrains, we perform online evaluation based on user acceptance of the generated messages. However, performing online experiments with every change to a CMG system is troublesome, as each iteration affects users and requires time to collect enough statistics. On the other hand, offline evaluation, a prevalent approach in the research literature, facilitates fast experiments but employs automatic metrics that are not guaranteed to represent the preferences of real users. In this work, we describe a novel way we employed to deal with this problem at JetBrains, by leveraging an online metric - the number of edits users introduce before committing the generated messages to the VCS - to select metrics for offline experiments. To support this new type of evaluation, we develop a novel markup collection tool mimicking the real workflow with a CMG system, collect a dataset with 57 pairs consisting of commit messages generated by GPT-4 and their counterparts edited by human experts, and design and verify a way to synthetically extend such a dataset. Then, we use the final dataset of 656 pairs to study how the widely used similarity metrics correlate with the online metric reflecting the real users' experience. Our results indicate that edit distance exhibits the highest correlation, whereas commonly used similarity metrics such as BLEU and METEOR demonstrate low correlation. This contradicts the previous studies on similarity metrics for CMG, suggesting that user interactions with a CMG system in real-world settings differ significantly from the responses by human labelers operating within controlled research environments. We release all the code and the dataset for researchers: https://jb.gg/cmg-evaluation.
A Comprehensive Survey of Evaluation Techniques for Recommendation Systems
The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.
Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit Distance
This paper revisits recent code similarity evaluation metrics, particularly focusing on the application of Abstract Syntax Tree (AST) editing distance in diverse programming languages. In particular, we explore the usefulness of these metrics and compare them to traditional sequence similarity metrics. Our experiments showcase the effectiveness of AST editing distance in capturing intricate code structures, revealing a high correlation with established metrics. Furthermore, we explore the strengths and weaknesses of AST editing distance and prompt-based GPT similarity scores in comparison to BLEU score, execution match, and Jaccard Similarity. We propose, optimize, and publish an adaptable metric that demonstrates effectiveness across all tested languages, representing an enhanced version of Tree Similarity of Edit Distance (TSED).
Session-level Normalization and Click-through Data Enhancement for Session-based Evaluation
Since a user usually has to issue a sequence of queries and examine multiple documents to resolve a complex information need in a search session, researchers have paid much attention to evaluating search systems at the session level rather than the single-query level. Most existing session-level metrics evaluate each query separately and then aggregate the query-level scores using a session-level weighting function. The assumptions behind these metrics are that all queries in the session should be involved, and their orders are fixed. However, if a search system could make the user satisfied with her first few queries, she may not need any subsequent queries. Besides, in most real-world search scenarios, due to a lack of explicit feedback from real users, we can only leverage some implicit feedback, such as users' clicks, as relevance labels for offline evaluation. Such implicit feedback might be different from the real relevance in a search session as some documents may be omitted in the previous query but identified in the later reformulations. To address the above issues, we make two assumptions about session-based evaluation, which explicitly describe an ideal session-search system and how to enhance click-through data in computing session-level evaluation metrics. Based on our assumptions, we design a session-level metric called Normalized U-Measure (NUM). NUM evaluates a session as a whole and utilizes an ideal session to normalize the result of the actual session. Besides, it infers session-level relevance labels based on implicit feedback. Experiments on two public datasets demonstrate the effectiveness of NUM by comparing it with existing session-based metrics in terms of correlation with user satisfaction and intuitiveness. We also conduct ablation studies to explore whether these assumptions hold.
Large Language Models Are State-of-the-Art Evaluators of Code Generation
Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.
Evaluating Step-by-step Reasoning Traces: A Survey
Step-by-step reasoning is widely used to enhance the reasoning ability of large language models (LLMs) in complex problems. Evaluating the quality of reasoning traces is crucial for understanding and improving LLM reasoning. However, the evaluation criteria remain highly unstandardized, leading to fragmented efforts in developing metrics and meta-evaluation benchmarks. To address this gap, this survey provides a comprehensive overview of step-by-step reasoning evaluation, proposing a taxonomy of evaluation criteria with four top-level categories (groundedness, validity, coherence, and utility). We then categorize metrics based on their implementations, survey which metrics are used for assessing each criterion, and explore whether evaluator models can transfer across different criteria. Finally, we identify key directions for future research.
TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring
Text-to-SQL enables users to interact with databases using natural language, simplifying the retrieval and synthesis of information. Despite the remarkable success of large language models (LLMs) in translating natural language questions into SQL queries, widespread deployment remains limited due to two primary challenges. First, the effective use of text-to-SQL models depends on users' understanding of the model's capabilities-the scope of questions the model can correctly answer. Second, the absence of abstention mechanisms can lead to incorrect SQL generation going unnoticed, thereby undermining trust in the model's output. To enable wider deployment, it is crucial to address these challenges in model design and enhance model evaluation to build trust in the model's output. To this end, we introduce TrustSQL, a novel comprehensive benchmark designed to evaluate text-to-SQL reliability-defined as a model's ability to correctly handle any type of input question by generating correct SQL queries for feasible questions and abstaining from generating infeasible ones (e.g., due to schema incompatibility or functionalities beyond SQL). We evaluate existing methods using a novel penalty-based scoring metric with two modeling approaches: (1) pipeline-based methods combining SQL generators with infeasible question detectors and SQL error detectors for abstention; and (2) unified methods using a single model for the entire task. Our experimental results reveal that achieving high scores under severe penalties requires significant effort and provide a new perspective on developing text-to-SQL models for safer deployment. TrustSQL is available at https://github.com/glee4810/TrustSQL.
Mercury: An Efficiency Benchmark for LLM Code Synthesis
Despite advancements in evaluating Large Language Models (LLMs) for code synthesis, benchmarks have predominantly focused on functional correctness, overlooking the importance of code efficiency. We present Mercury, the first benchmark designated for assessing the code efficiency of LLM code synthesis tasks. Mercury consists of 1,889 programming tasks covering diverse difficulty levels alongside test case generators generating unlimited cases for comprehensive evaluation. Unlike existing benchmarks, Mercury integrates a novel metric Beyond@K to measure normalized code efficiency based on historical submissions, leading to a new evaluation indicator for code synthesis, which encourages generating functionally correct and computationally efficient code, mirroring the real-world software development standard. Our findings reveal that while LLMs demonstrate the remarkable capability to generate functionally correct code, there still exists a substantial gap in their efficiency output, underscoring a new frontier for LLM research and development.
AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining
Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement.
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .
TurtleBench: Evaluating Top Language Models via Real-World Yes/No Puzzles
As the application of Large Language Models (LLMs) expands, the demand for reliable evaluations increases. Existing LLM evaluation benchmarks primarily rely on static datasets, making it challenging to assess model performance in dynamic interactions with users. Moreover, these benchmarks often depend on specific background knowledge, complicating the measurement of a model's logical reasoning capabilities. Other dynamic evaluation methods based on strong models or manual efforts may introduce biases and incur high costs and time demands, hindering large-scale application. To address these issues, we propose TurtleBench. TurtleBench collects real user guesses from our online Turtle Soup Puzzle platform that we developed. This approach allows for the relatively dynamic generation of evaluation datasets, mitigating the risk of model cheating while aligning assessments more closely with genuine user needs for reasoning capabilities, thus enhancing the reliability of evaluations. TurtleBench includes 1,532 user guesses along with the correctness of guesses after annotation. Using this dataset, we thoroughly evaluated nine of the most advanced LLMs available today. Notably, the OpenAI o1 series models did not achieve leading results in these evaluations. We propose several hypotheses for further research, such as "the latent reasoning of o1 utilizes trivial Chain-of-Thought (CoT) techniques" and "increasing CoT length not only provides reasoning benefits but also incurs noise costs."
CodeFuse-CR-Bench: A Comprehensiveness-aware Benchmark for End-to-End Code Review Evaluation in Python Projects
Automated code review (CR) is a key application for Large Language Models (LLMs), but progress is hampered by a "reality gap": existing benchmarks evaluate models on isolated sub-tasks using simplified, context-poor data. This fails to reflect the holistic context-rich nature of real-world CR. To bridge this gap, we introduce CodeFuse-CR-Bench, the first comprehensiveness-aware benchmark for repository-level CR evaluation. CodeFuse-CR-Bench comprises 601 high-quality instances from 70 Python projects covering nine Pull-Request (PR) problem domains, where each instance provides rich, multi-faceted context including the associated issue, PR details, and repository state, enabling end-to-end evaluation. Beyond superficial metrics, we also propose a novel evaluation framework that combines rule-based checks for location and syntax with model-based judgments of review quality. We present the first large-scale assessment of state-of-the-art LLMs on this comprehensive CR task. Our results establish crucial baselines and reveal that (1) no single LLM dominates all aspects of CR; (2) Gemini 2.5 Pro achieves the highest comprehensive performance; and (3) different LLMs exhibit varying robustness to redundant context. These findings highlight the necessity of holistic, multi-dimensional evaluation and provide actionable insights for advancing truly intelligent yet practical CR assistants.
Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain
As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.
The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers
Evaluation of large language models (LLMs) for code has primarily relied on static benchmarks, including HumanEval (Chen et al., 2021), which measure the ability of LLMs to generate complete code that passes unit tests. As LLMs are increasingly used as programmer assistants, we study whether gains on existing benchmarks translate to gains in programmer productivity when coding with LLMs, including time spent coding. In addition to static benchmarks, we investigate the utility of preference metrics that might be used as proxies to measure LLM helpfulness, such as code acceptance or copy rates. To do so, we introduce RealHumanEval, a web interface to measure the ability of LLMs to assist programmers, through either autocomplete or chat support. We conducted a user study (N=213) using RealHumanEval in which users interacted with six LLMs of varying base model performance. Despite static benchmarks not incorporating humans-in-the-loop, we find that improvements in benchmark performance lead to increased programmer productivity; however gaps in benchmark versus human performance are not proportional -- a trend that holds across both forms of LLM support. In contrast, we find that programmer preferences do not correlate with their actual performance, motivating the need for better, human-centric proxy signals. We also open-source RealHumanEval to enable human-centric evaluation of new models and the study data to facilitate efforts to improve code models.
Beyond Memorization: Reasoning-Driven Synthesis as a Mitigation Strategy Against Benchmark Contamination
Capability evaluation of large language models (LLMs) is increasingly shadowed by rising concerns of data contamination that cast doubts on whether static benchmarks measure genuine reasoning or mere memorization. We present an empirical study using an infinitely scalable framework to synthesize research-level QA directly from arXiv papers, harnessing the natural temporal structure of research publications where performance decay after knowledge cutoffs may indicate potential contamination. We evaluated 4 frontier model represented by 2 models of different knowledge cutoff dates per family on 1,643 multi-step reasoning questions synthesized from 20,277 arXiv papers stratified over 26 months, covering at least 6 months before and after all cutoff dates. Our results consistently showed a lack of significant performance decay near knowledge cutoff dates for models of various sizes, developers, and release dates. We further performed a comparative analysis with previous longitudinal studies that reported significant post-cutoff performance decay using directly retrieved questions based on public data. we hypothesize that the multi-step reasoning required by our synthesis pipeline offered additional complexity that goes deeper than shallow memorization, which effectively serves a mitigation strategy against benchmark contamination. We fully open source our code and dataset to aid reproducibility and advocate for a paradigm shift that prioritize reasoning-driven synthesis to construct benchmarks over simply collecting newly released questions periodically.
Can LLMs Generate High-Quality Test Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and Exposure
We introduce TestCase-Eval, a new benchmark for systematic evaluation of LLMs in test-case generation. TestCase-Eval includes 500 algorithm problems and 100,000 human-crafted solutions from the Codeforces platform. It focuses on two pivotal tasks: (1) Fault Coverage, which measures how well LLM-generated test sets probe diverse input scenarios and cover a wide range of potential failure modes. (2) Fault Exposure, which evaluates whether LLMs can craft a tailored test input that reveals a specific incorrect code implementation. We provide a comprehensive assessment of 19 state-of-the-art open-source and proprietary LLMs on TestCase-Eval, offering insights into their strengths and limitations in generating effective test cases for algorithm problems.
PARROT: A Benchmark for Evaluating LLMs in Cross-System SQL Translation
Large language models (LLMS) have shown increasing effectiveness in Text-to-SQL tasks. However, another closely related problem, Cross-System SQL Translation (a.k.a., SQL-to-SQL), which adapts a query written for one database system (e.g., MySQL) into its equivalent one for another system (e.g., ClickHouse), is of great practical importance but remains underexplored. Existing SQL benchmarks are not well-suited for SQL-to-SQL evaluation, which (1) focus on a limited set of database systems (often just SQLite) and (2) cannot capture many system-specific SQL dialects (e.g., customized functions, data types, and syntax rules). Thus, in this paper, we introduce PARROT, a Practical And Realistic BenchmaRk for CrOss-System SQL Translation. PARROT comprises 598 translation pairs from 38 open-source benchmarks and real-world business services, specifically prepared to challenge system-specific SQL understanding (e.g., LLMS achieve lower than 38.53% accuracy on average). We also provide multiple benchmark variants, including PARROT-Diverse with 28,003 translations (for extensive syntax testing) and PARROT-Simple with 5,306 representative samples (for focused stress testing), covering 22 production-grade database systems. To promote future research, we release a public leaderboard and source code at: https://code4db.github.io/parrot-bench/.
The illusion of a perfect metric: Why evaluating AI's words is harder than it looks
Evaluating Natural Language Generation (NLG) is crucial for the practical adoption of AI, but has been a longstanding research challenge. While human evaluation is considered the de-facto standard, it is expensive and lacks scalability. Practical applications have driven the development of various automatic evaluation metrics (AEM), designed to compare the model output with human-written references, generating a score which approximates human judgment. Over time, AEMs have evolved from simple lexical comparisons, to semantic similarity models and, more recently, to LLM-based evaluators. However, it seems that no single metric has emerged as a definitive solution, resulting in studies using different ones without fully considering the implications. This paper aims to show this by conducting a thorough examination of the methodologies of existing metrics, their documented strengths and limitations, validation methods, and correlations with human judgment. We identify several key challenges: metrics often capture only specific aspects of text quality, their effectiveness varies by task and dataset, validation practices remain unstructured, and correlations with human judgment are inconsistent. Importantly, we find that these challenges persist in the most recent type of metric, LLM-as-a-Judge, as well as in the evaluation of Retrieval Augmented Generation (RAG), an increasingly relevant task in academia and industry. Our findings challenge the quest for the 'perfect metric'. We propose selecting metrics based on task-specific needs and leveraging complementary evaluations and advocate that new metrics should focus on enhanced validation methodologies.
Towards Optimizing and Evaluating a Retrieval Augmented QA Chatbot using LLMs with Human in the Loop
Large Language Models have found application in various mundane and repetitive tasks including Human Resource (HR) support. We worked with the domain experts of SAP SE to develop an HR support chatbot as an efficient and effective tool for addressing employee inquiries. We inserted a human-in-the-loop in various parts of the development cycles such as dataset collection, prompt optimization, and evaluation of generated output. By enhancing the LLM-driven chatbot's response quality and exploring alternative retrieval methods, we have created an efficient, scalable, and flexible tool for HR professionals to address employee inquiries effectively. Our experiments and evaluation conclude that GPT-4 outperforms other models and can overcome inconsistencies in data through internal reasoning capabilities. Additionally, through expert analysis, we infer that reference-free evaluation metrics such as G-Eval and Prometheus demonstrate reliability closely aligned with that of human evaluation.
BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs
Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.
Evaluating Language Models for Efficient Code Generation
We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.
Bridging the Gap in XAI-Why Reliable Metrics Matter for Explainability and Compliance
This position paper emphasizes the critical gap in the evaluation of Explainable AI (XAI) due to the lack of standardized and reliable metrics, which diminishes its practical value, trustworthiness, and ability to meet regulatory requirements. Current evaluation methods are often fragmented, subjective, and biased, making them prone to manipulation and complicating the assessment of complex models. A central issue is the absence of a ground truth for explanations, complicating comparisons across various XAI approaches. To address these challenges, we advocate for widespread research into developing robust, context-sensitive evaluation metrics. These metrics should be resistant to manipulation, relevant to each use case, and based on human judgment and real-world applicability. We also recommend creating domain-specific evaluation benchmarks that align with the user and regulatory needs of sectors such as healthcare and finance. By encouraging collaboration among academia, industry, and regulators, we can create standards that balance flexibility and consistency, ensuring XAI explanations are meaningful, trustworthy, and compliant with evolving regulations.
Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models
Machine learning has demonstrated remarkable performance over finite datasets, yet whether the scores over the fixed benchmarks can sufficiently indicate the model's performance in the real world is still in discussion. In reality, an ideal robust model will probably behave similarly to the oracle (e.g., the human users), thus a good evaluation protocol is probably to evaluate the models' behaviors in comparison to the oracle. In this paper, we introduce a new robustness measurement that directly measures the image classification model's performance compared with a surrogate oracle (i.e., a foundation model). Besides, we design a simple method that can accomplish the evaluation beyond the scope of the benchmarks. Our method extends the image datasets with new samples that are sufficiently perturbed to be distinct from the ones in the original sets, but are still bounded within the same image-label structure the original test image represents, constrained by a foundation model pretrained with a large amount of samples. As a result, our new method will offer us a new way to evaluate the models' robustness performance, free of limitations of fixed benchmarks or constrained perturbations, although scoped by the power of the oracle. In addition to the evaluation results, we also leverage our generated data to understand the behaviors of the model and our new evaluation strategies.
Don't Make Your LLM an Evaluation Benchmark Cheater
Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie benchmark leakage, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.
Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
LastingBench: Defend Benchmarks Against Knowledge Leakage
The increasing complexity of large language models (LLMs) raises concerns about their ability to "cheat" on standard Question Answering (QA) benchmarks by memorizing task-specific data. This undermines the validity of benchmark evaluations, as they no longer reflect genuine model capabilities but instead the effects of data leakage. While prior work has focused on detecting such leakage, little attention has been given to mitigating its impact and preserving the long-term utility of benchmarks. In this paper, we introduce LastingBench, a novel framework designed to continuously reinforce and safeguard existing benchmarks against knowledge leakage. LastingBench identifies leakage points in the context through perturbation, then rewrites the leakage points to counterfactual ones-disrupting memorization while preserving the benchmark's original evaluative intent. Evaluations of state-of-the-art QA benchmarks show significant performance gaps, highlighting the efficacy of LastingBench in reducing memorization effects. LastingBench offers a practical and scalable solution to ensure benchmark robustness over time, promoting fairer and more interpretable evaluations of LLMs.
When Models Can't Follow: Testing Instruction Adherence Across 256 LLMs
Despite widespread deployment of Large Language Models, systematic evaluation of instruction-following capabilities remains challenging. While comprehensive benchmarks exist, focused assessments that quickly diagnose specific instruction adherence patterns are valuable. As newer models may be trained on existing benchmarks, novel evaluation approaches are needed to assess genuine capabilities rather than memorized performance. This paper presents a streamlined evaluation framework using twenty carefully designed prompts to assess LLM instruction-following across diverse task categories. We demonstrate this framework through a large-scale empirical study conducted on October 14, 2025, testing 256 verified working models from 331 available via OpenRouter. To ensure methodological rigor and prevent selection bias, we first verified each model's basic functionality before inclusion. Unlike large-scale benchmarks requiring extensive computational resources, our approach offers a practical diagnostic tool researchers and practitioners can readily apply. Our methodology builds upon verifiable instructions while introducing a compact test suite balancing comprehensiveness with efficiency. Each prompt targets distinct aspects of instruction following, including format compliance, content constraints, logical sequencing, and multi-step task execution. We evaluate models from major providers (OpenAI, Anthropic, Google, Meta, Mistral) and emerging implementations (Qwen, DeepSeek, community models), providing comparative performance analysis. Our findings reveal consistent failure modes and identify specific instruction types posing particular challenges. This work contributes both a practical evaluation tool and one of the most comprehensive empirical analyses of instruction-following capabilities across the contemporary LLM landscape.
TabStruct: Measuring Structural Fidelity of Tabular Data
Evaluating tabular generators remains a challenging problem, as the unique causal structural prior of heterogeneous tabular data does not lend itself to intuitive human inspection. Recent work has introduced structural fidelity as a tabular-specific evaluation dimension to assess whether synthetic data complies with the causal structures of real data. However, existing benchmarks often neglect the interplay between structural fidelity and conventional evaluation dimensions, thus failing to provide a holistic understanding of model performance. Moreover, they are typically limited to toy datasets, as quantifying existing structural fidelity metrics requires access to ground-truth causal structures, which are rarely available for real-world datasets. In this paper, we propose a novel evaluation framework that jointly considers structural fidelity and conventional evaluation dimensions. We introduce a new evaluation metric, global utility, which enables the assessment of structural fidelity even in the absence of ground-truth causal structures. In addition, we present TabStruct, a comprehensive evaluation benchmark offering large-scale quantitative analysis on 13 tabular generators from nine distinct categories, across 29 datasets. Our results demonstrate that global utility provides a task-independent, domain-agnostic lens for tabular generator performance. We release the TabStruct benchmark suite, including all datasets, evaluation pipelines, and raw results. Code is available at https://github.com/SilenceX12138/TabStruct.
Improving Relational Database Interactions with Large Language Models: Column Descriptions and Their Impact on Text-to-SQL Performance
Relational databases often suffer from uninformative descriptors of table contents, such as ambiguous columns and hard-to-interpret values, impacting both human users and Text-to-SQL models. This paper explores the use of large language models (LLMs) to generate informative column descriptions as a semantic layer for relational databases. Using the BIRD-Bench development set, we created ColSQL, a dataset with gold-standard column descriptions generated and refined by LLMs and human annotators. We evaluated several instruction-tuned models, finding that GPT-4o and Command R+ excelled in generating high-quality descriptions. Additionally, we applied an LLM-as-a-judge to evaluate model performance. Although this method does not align well with human evaluations, we included it to explore its potential and to identify areas for improvement. More work is needed to improve the reliability of automatic evaluations for this task. We also find that detailed column descriptions significantly improve Text-to-SQL execution accuracy, especially when columns are uninformative. This study establishes LLMs as effective tools for generating detailed metadata, enhancing the usability of relational databases.
Etalon: Holistic Performance Evaluation Framework for LLM Inference Systems
Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at https://github.com/project-etalon/etalon.
Evaluating Large Language Models on Non-Code Software Engineering Tasks
Large Language Models (LLMs) have demonstrated remarkable capabilities in code understanding and generation; however, their effectiveness on non-code Software Engineering (SE) tasks remains underexplored. We present the first comprehensive benchmark, which we name `Software Engineering Language Understanding' (SELU), for evaluating LLMs on 17 non-code tasks, spanning from identifying whether a requirement is functional or non-functional to estimating the effort and complexity of backlog items. SELU covers classification, regression, Named Entity Recognition (NER), and Masked Language Modeling (MLM) targets, with data drawn from diverse sources such as code repositories, issue tracking systems, and developer forums. We fine-tune 22 open-source LLMs, prompt two proprietary alternatives, and train two baselines. Performance is measured using metrics such as F1-macro, SMAPE, F1-micro, and accuracy, and compared via the Bayesian signed-rank test. Our results show that moderate-scale decoder-only models consistently form a top-tier, exhibiting high mean performance and low across-task variance, while domain adaptation via code-focused pre-training might yield only modest improvements. These insights guide model selection for non-code SE workflows and highlight directions for expanding SELU to generative and design-oriented scenarios.
Fundamental Challenges in Evaluating Text2SQL Solutions and Detecting Their Limitations
In this work, we dive into the fundamental challenges of evaluating Text2SQL solutions and highlight potential failure causes and the potential risks of relying on aggregate metrics in existing benchmarks. We identify two largely unaddressed limitations in current open benchmarks: (1) data quality issues in the evaluation data, mainly attributed to the lack of capturing the probabilistic nature of translating a natural language description into a structured query (e.g., NL ambiguity), and (2) the bias introduced by using different match functions as approximations for SQL equivalence. To put both limitations into context, we propose a unified taxonomy of all Text2SQL limitations that can lead to both prediction and evaluation errors. We then motivate the taxonomy by providing a survey of Text2SQL limitations using state-of-the-art Text2SQL solutions and benchmarks. We describe the causes of limitations with real-world examples and propose potential mitigation solutions for each category in the taxonomy. We conclude by highlighting the open challenges encountered when deploying such mitigation strategies or attempting to automatically apply the taxonomy.
MRG-Bench: Evaluating and Exploring the Requirements of Context for Repository-Level Code Generation
Large Language Models (LLMs) have demonstrated impressive capabilities in code generation. However, current evaluation datasets suffer from issues such as the lack of runnable test cases, deviation from the distribution of real-world code, and the ability to evaluate only the Python language. These limitations undermine the credibility of the evaluation results. To address these limitations, we introduce MRG-Bench (Multi-language Repository-level Code Generation Benchmark), a novel dataset that provides a more accurate evaluation of LLMs in practical repository-level code generation tasks. MRG-Bench has three main features: (1) practical data sourced from real-world code repositories that align to the practical distribution, (2) multiple programming languages support, including Python, Java, and Go, and (3) project-level runnable test cases to assess the quality of the generated code. Based on MRG-Bench, we conducted extensive experiments including large language models, long-context models, and RAG-related methods. These evaluation results demonstrate that current repository-level code generation techniques suffer from significant performance deficiencies. To further investigate why models fail, we designed novel experiments to annotate the underlying causes of generation errors. The results explicitly show that the majority of methods suffer from "difficulty in understanding user requirements," failing to comprehend their assigned tasks accurately. Moreover, the impact of different repository-level contexts on this issue exhibits significant disparities across different programming languages, suggesting that, in practice, specialized contextual information needs to be designed for different languages.
GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond
With the rapid advancement of large language models (LLMs), there is a pressing need for a comprehensive evaluation suite to assess their capabilities and limitations. Existing LLM leaderboards often reference scores reported in other papers without consistent settings and prompts, which may inadvertently encourage cherry-picking favored settings and prompts for better results. In this work, we introduce GPT-Fathom, an open-source and reproducible LLM evaluation suite built on top of OpenAI Evals. We systematically evaluate 10+ leading LLMs as well as OpenAI's legacy models on 20+ curated benchmarks across 7 capability categories, all under aligned settings. Our retrospective study on OpenAI's earlier models offers valuable insights into the evolutionary path from GPT-3 to GPT-4. Currently, the community is eager to know how GPT-3 progressively improves to GPT-4, including technical details like whether adding code data improves LLM's reasoning capability, which aspects of LLM capability can be improved by SFT and RLHF, how much is the alignment tax, etc. Our analysis sheds light on many of these questions, aiming to improve the transparency of advanced LLMs.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
The emergence of long-context language models with context windows extending to millions of tokens has created new opportunities for sophisticated code understanding and software development evaluation. We propose LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context LLMs in realistic, complex software development scenarios. Unlike existing code evaluation benchmarks that focus on single-function completion or short-context tasks, LoCoBench addresses the critical evaluation gap for long-context capabilities that require understanding entire codebases, reasoning across multiple files, and maintaining architectural consistency across large-scale software systems. Our benchmark provides 8,000 evaluation scenarios systematically generated across 10 programming languages, with context lengths spanning 10K to 1M tokens, a 100x variation that enables precise assessment of long-context performance degradation in realistic software development settings. LoCoBench introduces 8 task categories that capture essential long-context capabilities: architectural understanding, cross-file refactoring, multi-session development, bug investigation, feature implementation, code comprehension, integration testing, and security analysis. Through a 5-phase pipeline, we create diverse, high-quality scenarios that challenge LLMs to reason about complex codebases at unprecedented scale. We introduce a comprehensive evaluation framework with 17 metrics across 4 dimensions, including 8 new evaluation metrics, combined in a LoCoBench Score (LCBS). Our evaluation of state-of-the-art long-context models reveals substantial performance gaps, demonstrating that long-context understanding in complex software development represents a significant unsolved challenge that demands more attention. LoCoBench is released at: https://github.com/SalesforceAIResearch/LoCoBench.
DevBench: A Comprehensive Benchmark for Software Development
Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of programming, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. To this end, we propose DevBench, a comprehensive benchmark that evaluates LLMs across various stages of the software development lifecycle, including software design, environment setup, implementation, acceptance testing, and unit testing. DevBench features a wide range of programming languages and domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench. Analyses reveal that models struggle with understanding the complex structures in the repository, managing the compilation process, and grasping advanced programming concepts. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications. Our benchmark is available at https://github.com/open-compass/DevBench
BENCHAGENTS: Automated Benchmark Creation with Agent Interaction
Evaluations are limited by benchmark availability. As models evolve, there is a need to create benchmarks that can measure progress on new generative capabilities. However, creating new benchmarks through human annotations is slow and expensive, restricting comprehensive evaluations for any capability. We introduce BENCHAGENTS, a framework that methodically leverages large language models (LLMs) to automate benchmark creation for complex capabilities while inherently ensuring data and metric quality. BENCHAGENTS decomposes the benchmark creation process into planning, generation, data verification, and evaluation, each of which is executed by an LLM agent. These agents interact with each other and utilize human-in-the-loop feedback from benchmark developers to explicitly improve and flexibly control data diversity and quality. We use BENCHAGENTS to create benchmarks to evaluate capabilities related to planning and constraint satisfaction during text generation. We then use these benchmarks to study seven state-of-the-art models and extract new insights on common failure modes and model differences.
Evaluating the Performance of Large Language Models via Debates
Large Language Models (LLMs) are rapidly evolving and impacting various fields, necessitating the development of effective methods to evaluate and compare their performance. Most current approaches for performance evaluation are either based on fixed, domain-specific questions that lack the flexibility required in many real-world applications, or rely on human input, making them unscalable. To address these issues, we propose an automated benchmarking framework based on debates between LLMs, judged by another LLM. This method assesses not only domain knowledge, but also skills such as argumentative reasoning and inconsistency recognition. We evaluate the performance of various state-of-the-art LLMs using the debate framework and achieve rankings that align closely with popular rankings based on human input, eliminating the need for costly human crowdsourcing.
The Dawn of Natural Language to SQL: Are We Fully Ready?
Translating users' natural language questions into SQL queries (i.e., NL2SQL) significantly lowers the barriers to accessing relational databases. The emergence of Large Language Models has introduced a novel paradigm in NL2SQL tasks, enhancing capabilities dramatically. However, this raises a critical question: Are we fully prepared to deploy NL2SQL models in production? To address the posed questions, we present a multi-angle NL2SQL evaluation framework, NL2SQL360, to facilitate the design and test of new NL2SQL methods for researchers. Through NL2SQL360, we conduct a detailed comparison of leading NL2SQL methods across a range of application scenarios, such as different data domains and SQL characteristics, offering valuable insights for selecting the most appropriate NL2SQL methods for specific needs. Moreover, we explore the NL2SQL design space, leveraging NL2SQL360 to automate the identification of an optimal NL2SQL solution tailored to user-specific needs. Specifically, NL2SQL360 identifies an effective NL2SQL method, SuperSQL, distinguished under the Spdier dataset using the execution accuracy metric. Remarkably, SuperSQL achieves competitive performance with execution accuracy of 87% and 62.66% on the Spider and BIRD test sets, respectively.
Assessing the Sensitivity and Alignment of FOL Closeness Metrics
The recent successful paradigm of solving logical reasoning problems with tool-augmented large language models (LLMs) leverages translation of natural language (NL) statements into First-Order Logic~(FOL) and external theorem provers. However, the correctness of FOL statements, comprising operators and text, often go unverified due to the lack of a reliable evaluation metric for comparing generated and ground-truth FOLs. In this paper, we conduct a comprehensive study on the sensitivity of existing NL-, FOL-, and graph-based metrics to capture differences between a sampled FOL and its corresponding ground-truth. We then measure the alignment between a metric-based ranking of FOL outputs and a strong LLM as-a-judge. To do this, we first apply operator and text-based perturbations to ground-truth FOL statements to assess metric sensitivity. We then evaluate metric robustness by comparing the metrics against LLMs judgment. Our empirical findings highlight a clear oversensitivity in the n-gram metric BLEU for text perturbations. The operator perturbation affects the semantic graph metric Smatch++ for structural changes, and the FOL metric for specific operator changes. We observe a closer alignment between BertScore and LLM judgement, proving the importance of semantic evaluation. Additionally, we show that combining metrics enhances both robustness and sensitivity compared to using individual metrics.
Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
Program synthesis has been long studied with recent approaches focused on directly using the power of Large Language Models (LLMs) to generate code. Programming benchmarks, with curated synthesis problems and test-cases, are used to measure the performance of various LLMs on code synthesis. However, these test-cases can be limited in both quantity and quality for fully assessing the functional correctness of the generated code. Such limitation in the existing benchmarks begs the following question: In the era of LLMs, is the code generated really correct? To answer this, we propose EvalPlus -- a code synthesis evaluation framework to rigorously benchmark the functional correctness of LLM-synthesized code. EvalPlus augments a given evaluation dataset with large amounts of test-cases newly produced by an automatic test input generator, powered by both LLM- and mutation-based strategies. While EvalPlus is general, we extend the test-cases of the popular HumanEval benchmark by 80x to build HumanEval+. Our extensive evaluation across 26 popular LLMs (e.g., GPT-4 and ChatGPT) demonstrates that HumanEval+ is able to catch significant amounts of previously undetected wrong code synthesized by LLMs, reducing the pass@k by up-to 19.3-28.9%. We also surprisingly found that test insufficiency can lead to mis-ranking. For example, both WizardCoder-CodeLlama and Phind-CodeLlama now outperform ChatGPT on HumanEval+, while none of them could on HumanEval. Our work not only indicates that prior popular code synthesis evaluation results do not accurately reflect the true performance of LLMs for code synthesis, but also opens up a new direction to improve such programming benchmarks through automated testing. We have open-sourced our tools, enhanced datasets as well as all LLM-generated code at https://github.com/evalplus/evalplus to facilitate and accelerate future LLM-for-code research.
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving
We survey the large language model (LLM) serving area to understand the intricate dynamics between cost-efficiency and accuracy, which is magnified by the growing need for longer contextual understanding when deploying models at a massive scale. Our findings reveal that works in this space optimize along three distinct but conflicting goals: improving serving context length (C), improving serving accuracy (A), and improving serving performance (P). Drawing inspiration from the CAP theorem in databases, we propose a CAP principle for LLM serving, which suggests that any optimization can improve at most two of these three goals simultaneously. Our survey categorizes existing works within this framework. We find the definition and continuity of user-perceived measurement metrics are crucial in determining whether a goal has been met, akin to prior CAP databases in the wild. We recognize the CAP principle for LLM serving as a guiding principle, rather than a formal theorem, to inform designers of the inherent and dynamic trade-offs in serving models. As serving accuracy and performance have been extensively studied, this survey focuses on works that extend serving context length and address the resulting challenges.
CIBench: Evaluating Your LLMs with a Code Interpreter Plugin
While LLM-Based agents, which use external tools to solve complex problems, have made significant progress, benchmarking their ability is challenging, thereby hindering a clear understanding of their limitations. In this paper, we propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks. Our evaluation framework includes an evaluation dataset and two evaluation modes. The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions. The two evaluation modes assess LLMs' ability with and without human assistance. We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
SEAL: Suite for Evaluating API-use of LLMs
Large language models (LLMs) have limitations in handling tasks that require real-time access to external APIs. While several benchmarks like ToolBench and APIGen have been developed to assess LLMs' API-use capabilities, they often suffer from issues such as lack of generalizability, limited multi-step reasoning coverage, and instability due to real-time API fluctuations. In this paper, we introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world API usage. SEAL standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs by introducing a GPT-4-powered API simulator with caching for deterministic evaluations. Our testbed provides a comprehensive evaluation pipeline that covers API retrieval, API calls, and final responses, offering a reliable framework for structured performance comparison in diverse real-world scenarios. SEAL is publicly available, with ongoing updates for new benchmarks.
EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL.
CodeBLEU: a Method for Automatic Evaluation of Code Synthesis
Evaluation metrics play a vital role in the growth of an area as it defines the standard of distinguishing between good and bad models. In the area of code synthesis, the commonly used evaluation metric is BLEU or perfect accuracy, but they are not suitable enough to evaluate codes, because BLEU is originally designed to evaluate the natural language, neglecting important syntactic and semantic features of codes, and perfect accuracy is too strict thus it underestimates different outputs with the same semantic logic. To remedy this, we introduce a new automatic evaluation metric, dubbed CodeBLEU. It absorbs the strength of BLEU in the n-gram match and further injects code syntax via abstract syntax trees (AST) and code semantics via data-flow. We conduct experiments by evaluating the correlation coefficient between CodeBLEU and quality scores assigned by the programmers on three code synthesis tasks, i.e., text-to-code, code translation, and code refinement. Experimental results show that our proposed CodeBLEU can achieve a better correlation with programmer assigned scores compared with BLEU and accuracy.
A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models
The rapid advancements in generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data, particularly in the realm of structured tabular formats, such as product reviews. Despite the potential benefits, concerns regarding privacy leakage have surfaced, especially when personal information is utilized in the training datasets. In addition, there is an absence of a comprehensive evaluation framework capable of quantitatively measuring the quality of the generated synthetic data and their utility for downstream tasks. In response to this gap, we introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data via a suite of diverse evaluation metrics. We validate the efficacy of our proposed framework - SynEval - by applying it to synthetic product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama. Our experimental findings illuminate the trade-offs between various evaluation metrics in the context of synthetic data generation. Furthermore, SynEval stands as a critical instrument for researchers and practitioners engaged with synthetic tabular data,, empowering them to judiciously determine the suitability of the generated data for their specific applications, with an emphasis on upholding user privacy.
Reinforcement Learning from Automatic Feedback for High-Quality Unit Test Generation
Software testing is a crucial aspect of software development, and the creation of high-quality tests that adhere to best practices is essential for effective maintenance. Recently, Large Language Models (LLMs) have gained popularity for code generation, including the automated creation of test cases. However, these LLMs are often trained on vast amounts of publicly available code, which may include test cases that do not adhere to best practices and may even contain test smells (anti-patterns). To address this issue, we propose a novel technique called Reinforcement Learning from Static Quality Metrics (RLSQM). To begin, we analyze the anti-patterns generated by the LLM and show that LLMs can generate undesirable test smells. Thus, we train specific reward models for each static quality metric, then utilize Proximal Policy Optimization (PPO) to train models for optimizing a single quality metric at a time. Furthermore, we amalgamate these rewards into a unified reward model aimed at capturing different best practices and quality aspects of tests. By comparing RL-trained models with those trained using supervised learning, we provide insights into how reliably utilize RL to improve test generation quality and into the effects of various training strategies. Our experimental results demonstrate that the RL-optimized model consistently generated high-quality test cases compared to the base LLM, improving the model by up to 21%, and successfully generates nearly 100% syntactically correct code. RLSQM also outperformed GPT-4 on four out of seven metrics. This represents a significant step towards enhancing the overall efficiency and reliability of software testing through Reinforcement Learning and static quality metrics. Our data are available at this link: https://figshare.com/s/ded476c8d4c221222849.
T2R-bench: A Benchmark for Generating Article-Level Reports from Real World Industrial Tables
Extensive research has been conducted to explore the capabilities of large language models (LLMs) in table reasoning. However, the essential task of transforming tables information into reports remains a significant challenge for industrial applications. This task is plagued by two critical issues: 1) the complexity and diversity of tables lead to suboptimal reasoning outcomes; and 2) existing table benchmarks lack the capacity to adequately assess the practical application of this task. To fill this gap, we propose the table-to-report task and construct a bilingual benchmark named T2R-bench, where the key information flow from the tables to the reports for this task. The benchmark comprises 457 industrial tables, all derived from real-world scenarios and encompassing 19 industry domains as well as 4 types of industrial tables. Furthermore, we propose an evaluation criteria to fairly measure the quality of report generation. The experiments on 25 widely-used LLMs reveal that even state-of-the-art models like Deepseek-R1 only achieves performance with 62.71 overall score, indicating that LLMs still have room for improvement on T2R-bench. Source code and data will be available after acceptance.
SWE-SQL: Illuminating LLM Pathways to Solve User SQL Issues in Real-World Applications
Resolution of complex SQL issues persists as a significant bottleneck in real-world database applications. Current Large Language Models (LLMs), while adept at text-to-SQL translation, have not been rigorously evaluated on the more challenging task of debugging SQL issues. To address this gap, we introduce BIRD-CRITIC, a new SQL issue debugging benchmark comprising 530 PostgreSQL tasks (BIRD-CRITIC-PG) and 570 multi-dialect tasks (BIRD-CRITIC-Multi), distilled from authentic user issues and replayed within new environments to facilitate rigorous evaluation. Baseline evaluations underscore the task's complexity, with the leading reasoning model O3-Mini achieving only 38.87% success rate on BIRD-CRITIC-PG and 33.33% on BIRD-CRITIC-Multi. Meanwhile, advancing open-source models for database tasks is crucial for empowering local development while safeguarding data privacy. Therefore, we present Six-Gym (Sql-fIX-Gym), a training environment for elevating open-source model capabilities for SQL issue debugging. This environment leverages SQL-Rewind strategy, which automatically generates executable issue-solution datasets by reverse-engineering issues from verified SQLs. However, popular trajectory-based fine-tuning methods do not explore substantial supervisory signals. We further propose f-Plan Boosting, which extracts high-level debugging plans from SQL solutions, enabling teacher LLMs to produce 73.7% more successful trajectories for training. We integrate these components into an open-source agent, Bird-Fixer. Based on Qwen-2.5-Coder-14B, Bird-Fixer achieves 38.11% success rate on BIRD-CRITIC-PG and 29.65% on BIRD-CRITIC-Multi, surpassing leading proprietary models such as Claude-3.7-Sonnet and GPT-4.1, marking a significant step toward democratizing sophisticated SQL-debugging capabilities. The leaderboard and source code are available: https://bird-critic.github.io/
The Fault in our Stars: Quality Assessment of Code Generation Benchmarks
Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may have data contamination issues.
MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures
Evaluating large language models (LLMs) is challenging. Traditional ground-truth-based benchmarks fail to capture the comprehensiveness and nuance of real-world queries, while LLM-as-judge benchmarks suffer from grading biases and limited query quantity. Both of them may also become contaminated over time. User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. In this work, we propose MixEval, a new paradigm for establishing efficient, gold-standard LLM evaluation by strategically mixing off-the-shelf benchmarks. It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks. Based on MixEval, we further build MixEval-Hard, which offers more room for model improvement. Our benchmarks' advantages lie in (1) a 0.96 model ranking correlation with Chatbot Arena arising from the highly impartial query distribution and grading mechanism, (2) fast, cheap, and reproducible execution (6% of the time and cost of MMLU), and (3) dynamic evaluation enabled by the rapid and stable data update pipeline. We provide extensive meta-evaluation and analysis for our and existing LLM benchmarks to deepen the community's understanding of LLM evaluation and guide future research directions.
Leveraging Reinforcement Learning and Large Language Models for Code Optimization
Code optimization is a daunting task that requires a significant level of expertise from experienced programmers. This level of expertise is not sufficient when compared to the rapid development of new hardware architectures. Towards advancing the whole code optimization process, recent approaches rely on machine learning and artificial intelligence techniques. This paper introduces a new framework to decrease the complexity of code optimization. The proposed framework builds on large language models (LLMs) and reinforcement learning (RL) and enables LLMs to receive feedback from their environment (i.e., unit tests) during the fine-tuning process. We compare our framework with existing state-of-the-art models and show that it is more efficient with respect to speed and computational usage, as a result of the decrement in training steps and its applicability to models with fewer parameters. Additionally, our framework reduces the possibility of logical and syntactical errors. Toward evaluating our approach, we run several experiments on the PIE dataset using a CodeT5 language model and RRHF, a new reinforcement learning algorithm. We adopt a variety of evaluation metrics with regards to optimization quality, and speedup. The evaluation results demonstrate that the proposed framework has similar results in comparison with existing models using shorter training times and smaller pre-trained models. In particular, we accomplish an increase of 5.6% and 2.2 over the baseline models concerning the %OP T and SP metrics.
tinyBenchmarks: evaluating LLMs with fewer examples
The versatility of large language models (LLMs) led to the creation of diverse benchmarks that thoroughly test a variety of language models' abilities. These benchmarks consist of tens of thousands of examples making evaluation of LLMs very expensive. In this paper, we investigate strategies to reduce the number of evaluations needed to assess the performance of an LLM on several key benchmarks. For example, we show that to accurately estimate the performance of an LLM on MMLU, a popular multiple-choice QA benchmark consisting of 14K examples, it is sufficient to evaluate this LLM on 100 curated examples. We release evaluation tools and tiny versions of popular benchmarks: Open LLM Leaderboard, MMLU, HELM, and AlpacaEval 2.0. Our empirical analysis demonstrates that these tools and tiny benchmarks are sufficient to reliably and efficiently reproduce the original evaluation results.
AutoReproduce: Automatic AI Experiment Reproduction with Paper Lineage
Efficient experiment reproduction is critical to accelerating progress in artificial intelligence. However, the inherent complexity of method design and training procedures presents substantial challenges for automation. Notably, reproducing experiments often requires implicit domain-specific knowledge not explicitly documented in the original papers. To address this, we introduce the paper lineage algorithm, which identifies and extracts implicit knowledge from the relevant references cited by the target paper. Building on this idea, we propose AutoReproduce, a multi-agent framework capable of automatically reproducing experiments described in research papers in an end-to-end manner. AutoReproduce enhances code executability by generating unit tests alongside the reproduction process. To evaluate the reproduction capability, we construct ReproduceBench, a benchmark annotated with verified implementations, and introduce novel evaluation metrics to assess both the reproduction and execution fidelity. Experimental results demonstrate that AutoReproduce outperforms the existing strong agent baselines on all five evaluation metrics by a peak margin of over 70%. In particular, compared to the official implementations, AutoReproduce achieves an average performance gap of 22.1% on 89.74% of the executable experiment runs. The code will be available at https://github.com/AI9Stars/AutoReproduce.
Generate and Pray: Using SALLMS to Evaluate the Security of LLM Generated Code
With the growing popularity of Large Language Models (e.g. GitHub Copilot, ChatGPT, etc.) in software engineers' daily practices, it is important to ensure that the code generated by these tools is not only functionally correct but also free of vulnerabilities. Although LLMs can help developers to be more productive, prior empirical studies have shown that LLMs can generate insecure code. There are two contributing factors to the insecure code generation. First, existing datasets used to evaluate Large Language Models (LLMs) do not adequately represent genuine software engineering tasks sensitive to security. Instead, they are often based on competitive programming challenges or classroom-type coding tasks. In real-world applications, the code produced is integrated into larger codebases, introducing potential security risks. There's a clear absence of benchmarks that focus on evaluating the security of the generated code. Second, existing evaluation metrics primarily focus on the functional correctness of the generated code while ignoring security considerations. Metrics such as pass@k gauge the probability of obtaining the correct code in the top k suggestions. Other popular metrics like BLEU, CodeBLEU, ROUGE, and METEOR similarly emphasize functional accuracy, neglecting security implications. In light of these research gaps, in this paper, we described SALLM, a framework to benchmark LLMs' abilities to generate secure code systematically. This framework has three major components: a novel dataset of security-centric Python prompts, an evaluation environment to test the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.
Automatic Legal Writing Evaluation of LLMs
Despite the recent advances in Large Language Models, benchmarks for evaluating legal writing remain scarce due to the inherent complexity of assessing open-ended responses in this domain. One of the key challenges in evaluating language models on domain-specific tasks is finding test datasets that are public, frequently updated, and contain comprehensive evaluation guidelines. The Brazilian Bar Examination meets these requirements. We introduce oab-bench, a benchmark comprising 105 questions across seven areas of law from recent editions of the exam. The benchmark includes comprehensive evaluation guidelines and reference materials used by human examiners to ensure consistent grading. We evaluate the performance of four LLMs on oab-bench, finding that Claude-3.5 Sonnet achieves the best results with an average score of 7.93 out of 10, passing all 21 exams. We also investigated whether LLMs can serve as reliable automated judges for evaluating legal writing. Our experiments show that frontier models like OpenAI's o1 achieve a strong correlation with human scores when evaluating approved exams, suggesting their potential as reliable automated evaluators despite the inherently subjective nature of legal writing assessment. The source code and the benchmark -- containing questions, evaluation guidelines, model-generated responses, and their respective automated evaluations -- are publicly available.
UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.
Top Leaderboard Ranking = Top Coding Proficiency, Always? EvoEval: Evolving Coding Benchmarks via LLM
LLMs have become the go-to choice for code generation tasks, with an exponential increase in the training, development, and usage of LLMs specifically for code generation. To evaluate the ability of LLMs on code, both academic and industry practitioners rely on popular handcrafted benchmarks. However, prior benchmarks contain only a very limited set of problems, both in quantity and variety. Further, due to popularity and age, many benchmarks are prone to data leakage where example solutions can be readily found on the web and thus potentially in training data. Such limitations inevitably lead us to inquire: Is the leaderboard performance on existing benchmarks reliable and comprehensive enough to measure the program synthesis ability of LLMs? To address this, we introduce EvoEval -- a program synthesis benchmark suite created by evolving existing benchmarks into different targeted domains for a comprehensive evaluation of LLM coding abilities. Our study on 51 LLMs shows that compared to the high performance obtained on standard benchmarks like HumanEval, there is a significant drop in performance (on average 39.4%) when using EvoEval. Additionally, the decrease in performance can range from 19.6% to 47.7%, leading to drastic ranking changes amongst LLMs and showing potential overfitting of existing benchmarks. Furthermore, we showcase various insights, including the brittleness of instruction-following models when encountering rewording or subtle changes as well as the importance of learning problem composition and decomposition. EvoEval not only provides comprehensive benchmarks, but can be used to further evolve arbitrary problems to keep up with advances and the ever-changing landscape of LLMs for code. We have open-sourced our benchmarks, tools, and complete LLM generations at https://github.com/evo-eval/evoeval
Efficient multi-prompt evaluation of LLMs
Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs' abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry. For example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Our code and data can be found at https://github.com/felipemaiapolo/prompt-eval.
TQA-Bench: Evaluating LLMs for Multi-Table Question Answering with Scalable Context and Symbolic Extension
The advent of large language models (LLMs) has unlocked great opportunities in complex data management tasks, particularly in question answering (QA) over complicated multi-table relational data. Despite significant progress, systematically evaluating LLMs on multi-table QA remains a critical challenge due to the inherent complexity of analyzing heterogeneous table structures and potential large scale of serialized relational data. Existing benchmarks primarily focus on single-table QA, failing to capture the intricacies of reasoning across multiple relational tables, as required in real-world domains such as finance, healthcare, and e-commerce. To address this gap, we present TQA-Bench, a new multi-table QA benchmark designed to evaluate the capabilities of LLMs in tackling complex QA tasks over relational data. Our benchmark incorporates diverse relational database instances sourced from real-world public datasets and introduces a flexible sampling mechanism to create tasks with varying multi-table context lengths, ranging from 8K to 64K tokens. To ensure robustness and reliability, we integrate symbolic extensions into the evaluation framework, enabling the assessment of LLM reasoning capabilities beyond simple data retrieval or probabilistic pattern matching. We systematically evaluate a range of LLMs, both open-source and closed-source, spanning model scales from 7 billion to 70 billion parameters. Our extensive experiments reveal critical insights into the performance of LLMs in multi-table QA, highlighting both challenges and opportunities for advancing their application in complex, data-driven environments. Our benchmark implementation and results are available at https://github.com/Relaxed-System-Lab/TQA-Bench.
Automatic Evaluation of Healthcare LLMs Beyond Question-Answering
Current Large Language Models (LLMs) benchmarks are often based on open-ended or close-ended QA evaluations, avoiding the requirement of human labor. Close-ended measurements evaluate the factuality of responses but lack expressiveness. Open-ended capture the model's capacity to produce discourse responses but are harder to assess for correctness. These two approaches are commonly used, either independently or together, though their relationship remains poorly understood. This work is focused on the healthcare domain, where both factuality and discourse matter greatly. It introduces a comprehensive, multi-axis suite for healthcare LLM evaluation, exploring correlations between open and close benchmarks and metrics. Findings include blind spots and overlaps in current methodologies. As an updated sanity check, we release a new medical benchmark--CareQA--, with both open and closed variants. Finally, we propose a novel metric for open-ended evaluations --Relaxed Perplexity-- to mitigate the identified limitations.
Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language Models
In recent years, researchers have proposed numerous benchmarks to evaluate the impressive coding capabilities of large language models (LLMs). However, existing benchmarks primarily focus on assessing the correctness of code generated by LLMs, while neglecting other critical dimensions that also significantly impact code quality. Therefore, this paper proposes the RACE benchmark, which comprehensively evaluates the quality of code generated by LLMs across 4 dimensions: Readability, mAintainability, Correctness, and Efficiency. Specifically, considering the demand-dependent nature of dimensions beyond correctness, we design various types of user requirements for each dimension to assess the model's ability to generate correct code that also meets user demands. We evaluate 18 representative LLMs on RACE and find that: 1) the current LLMs' ability to generate high-quality code on demand does not yet meet the requirements of software development; 2) readability serves as a critical indicator of the overall quality of generated code; 3) most LLMs exhibit an inherent preference for specific coding style. These findings can help researchers gain a deeper understanding of the coding capabilities of current LLMs and shed light on future directions for model improvement.
N-Best Hypotheses Reranking for Text-To-SQL Systems
Text-to-SQL task maps natural language utterances to structured queries that can be issued to a database. State-of-the-art (SOTA) systems rely on finetuning large, pre-trained language models in conjunction with constrained decoding applying a SQL parser. On the well established Spider dataset, we begin with Oracle studies: specifically, choosing an Oracle hypothesis from a SOTA model's 10-best list, yields a 7.7% absolute improvement in both exact match (EM) and execution (EX) accuracy, showing significant potential improvements with reranking. Identifying coherence and correctness as reranking approaches, we design a model generating a query plan and propose a heuristic schema linking algorithm. Combining both approaches, with T5-Large, we obtain a consistent 1% improvement in EM accuracy, and a ~2.5% improvement in EX, establishing a new SOTA for this task. Our comprehensive error studies on DEV data show the underlying difficulty in making progress on this task.
Out of the BLEU: how should we assess quality of the Code Generation models?
In recent years, researchers have created and introduced a significant number of various code generation models. As human evaluation of every new model version is unfeasible, the community adopted automatic evaluation metrics such as BLEU to approximate the results of human judgement. These metrics originate from the machine translation domain and it is unclear whether they are applicable for the code generation tasks and how well they agree with the human evaluation on this task. There are also other metrics, CodeBLEU and RUBY, developed to estimate the similarity of code, that take into account the properties of source code. However, for these metrics there are hardly any studies on their agreement with the human evaluation. Despite all that, minimal differences in the metric scores have been used in recent papers to claim superiority of some code generation models over the others. In this paper, we present a study on the applicability of six metrics -- BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU, and RUBY -- for evaluation of code generation models. We conduct a study on two different code generation datasets and use human annotators to assess the quality of all models run on these datasets. The results indicate that for the CoNaLa dataset of Python one-liners, none of the metrics can correctly emulate human judgement on which model is better with >95% certainty if the difference in model scores is less than 5 points. For the HearthStone dataset, which consists of classes of a particular structure, a difference in model scores of at least 2 points is enough to claim the superiority of one model over the other. Our findings suggest that the ChrF metric is a better fit for the evaluation of code generation models than the commonly used BLEU and CodeBLEU. Yet, finding a metric for code generation that closely agrees with humans requires additional work.
EvoCodeBench: An Evolving Code Generation Benchmark with Domain-Specific Evaluations
How to evaluate Large Language Models (LLMs) in code generation remains an open question. Existing benchmarks have two limitations - data leakage and lack of domain-specific evaluation. The former hurts the fairness of benchmarks, and the latter hinders practitioners from selecting superior LLMs for specific programming domains. To address these two limitations, we propose a new benchmark - EvoCodeBench, which has the following advances: (1) Evolving data. EvoCodeBench will be dynamically updated every period (e.g., 6 months) to avoid data leakage. This paper releases the first version - EvoCodeBench-2403, containing 275 samples from 25 repositories. (2) A domain taxonomy and domain labels. Based on the statistics of open-source communities, we design a programming domain taxonomy consisting of 10 popular domains. Based on the taxonomy, we annotate each sample in EvoCodeBench with a domain label. (3) Domain-specific evaluations. Besides the Pass@k, we compute the Domain-Specific Improvement (DSI) and define LLMs' comfort and strange domains. These evaluations help practitioners select superior LLMs in specific domains and discover the shortcomings of existing LLMs. We evaluate 8 popular LLMs (e.g., gpt-4, DeepSeek Coder) on EvoCodeBench and summarize some insights. EvoCodeBench reveals the actual abilities of these LLMs in real-world repositories. For example, the highest Pass@1 of gpt-4 on EvoCodeBench-2403 is only 20.74%. Besides, we evaluate LLMs in different domains and discover their comfort and strange domains. For example, gpt-4 performs best in most domains but falls behind others in the Internet domain. StarCoder 2-15B unexpectedly performs well in the Database domain and even outperforms 33B LLMs. EvoCodeBench has been released.
GroUSE: A Benchmark to Evaluate Evaluators in Grounded Question Answering
Retrieval-Augmented Generation (RAG) has emerged as a common paradigm to use Large Language Models (LLMs) alongside private and up-to-date knowledge bases. In this work, we address the challenges of using LLM-as-a-Judge when evaluating grounded answers generated by RAG systems. To assess the calibration and discrimination capabilities of judge models, we identify 7 generator failure modes and introduce GroUSE (Grounded QA Unitary Scoring of Evaluators), a meta-evaluation benchmark of 144 unit tests. This benchmark reveals that existing automated RAG evaluation frameworks often overlook important failure modes, even when using GPT-4 as a judge. To improve on the current design of automated RAG evaluation frameworks, we propose a novel pipeline and find that while closed models perform well on GroUSE, state-of-the-art open-source judges do not generalize to our proposed criteria, despite strong correlation with GPT-4's judgement. Our findings suggest that correlation with GPT-4 is an incomplete proxy for the practical performance of judge models and should be supplemented with evaluations on unit tests for precise failure mode detection. We further show that finetuning Llama-3 on GPT-4's reasoning traces significantly boosts its evaluation capabilities, improving upon both correlation with GPT-4's evaluations and calibration on reference situations.
Reranking-based Generation for Unbiased Perspective Summarization
Generating unbiased summaries in real-world settings such as political perspective summarization remains a crucial application of Large Language Models (LLMs). Yet, existing evaluation frameworks rely on traditional metrics for measuring key attributes such as coverage and faithfulness without verifying their applicability, and efforts to develop improved summarizers are still nascent. We address these gaps by (1) identifying reliable metrics for measuring perspective summary quality, and (2) investigating the efficacy of LLM-based methods beyond zero-shot inference. Namely, we build a test set for benchmarking metric reliability using human annotations and show that traditional metrics underperform compared to language model-based metrics, which prove to be strong evaluators. Using these metrics, we show that reranking-based methods yield strong results, and preference tuning with synthetically generated and reranking-labeled data further boosts performance. Our findings aim to contribute to the reliable evaluation and development of perspective summarization methods.
DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern
Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .
T-Eval: Evaluating the Tool Utilization Capability Step by Step
Large language models (LLM) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool-utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available at https://github.com/open-compass/T-Eval.
InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models
Large Language Models for code (code LLMs) have witnessed tremendous progress in recent years. With the rapid development of code LLMs, many popular evaluation benchmarks, such as HumanEval, DS-1000, and MBPP, have emerged to measure the performance of code LLMs with a particular focus on code generation tasks. However, they are insufficient to cover the full range of expected capabilities of code LLMs, which span beyond code generation to answering diverse coding-related questions. To fill this gap, we propose InfiBench, the first large-scale freeform question-answering (QA) benchmark for code to our knowledge, comprising 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages. InfiBench uses four types of model-free automatic metrics to evaluate response correctness where domain experts carefully concretize the criterion for each question. We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings. Our detailed analyses showcase potential directions for further advancement of code LLMs. InfiBench is fully open source and continuously expanding to foster more scientific and systematic practices for code LLM evaluation.
On the Evaluation of Commit Message Generation Models: An Experimental Study
Commit messages are natural language descriptions of code changes, which are important for program understanding and maintenance. However, writing commit messages manually is time-consuming and laborious, especially when the code is updated frequently. Various approaches utilizing generation or retrieval techniques have been proposed to automatically generate commit messages. To achieve a better understanding of how the existing approaches perform in solving this problem, this paper conducts a systematic and in-depth analysis of the state-of-the-art models and datasets. We find that: (1) Different variants of the BLEU metric are used in previous works, which affects the evaluation and understanding of existing methods. (2) Most existing datasets are crawled only from Java repositories while repositories in other programming languages are not sufficiently explored. (3) Dataset splitting strategies can influence the performance of existing models by a large margin. Some models show better performance when the datasets are split by commit, while other models perform better when the datasets are split by timestamp or by project. Based on our findings, we conduct a human evaluation and find the BLEU metric that best correlates with the human scores for the task. We also collect a large-scale, information-rich, and multi-language commit message dataset MCMD and evaluate existing models on this dataset. Furthermore, we conduct extensive experiments under different dataset splitting strategies and suggest the suitable models under different scenarios. Based on the experimental results and findings, we provide feasible suggestions for comprehensively evaluating commit message generation models and discuss possible future research directions. We believe this work can help practitioners and researchers better evaluate and select models for automatic commit message generation.
COFFE: A Code Efficiency Benchmark for Code Generation
Code generation has largely improved development efficiency in the era of large language models (LLMs). With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed descriptions in natural language. Many research efforts are being devoted to improving the correctness of LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is not stable and comprehensive, threatening the validity of the time efficiency evaluation. To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve the distinguishability, we design a novel stressful test case generation approach with contracts and two new formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw some implications for LLM researchers and software practitioners to facilitate future research and usage of LLMs in code generation.
Domaino1s: Guiding LLM Reasoning for Explainable Answers in High-Stakes Domains
Large Language Models (LLMs) are widely applied to downstream domains. However, current LLMs for high-stakes domain tasks, such as financial investment and legal QA, typically generate brief answers without reasoning processes and explanations. This limits users' confidence in making decisions based on their responses. While original CoT shows promise, it lacks self-correction mechanisms during reasoning. This work introduces Domaino1s, which enhances LLMs' reasoning capabilities on domain tasks through supervised fine-tuning and tree search. We construct CoT-stock-2k and CoT-legal-2k datasets for fine-tuning models that activate domain-specific reasoning steps based on their judgment. Additionally, we propose Selective Tree Exploration to spontaneously explore solution spaces and sample optimal reasoning paths to improve performance. We also introduce PROOF-Score, a new metric for evaluating domain models' explainability, complementing traditional accuracy metrics with richer assessment dimensions. Extensive experiments on stock investment recommendation and legal reasoning QA tasks demonstrate Domaino1s's leading performance and explainability. Our code is available at https://anonymous.4open.science/r/Domaino1s-006F/.
Are LLMs Prescient? A Continuous Evaluation using Daily News as the Oracle
Many existing evaluation benchmarks for Large Language Models (LLMs) quickly become outdated due to the emergence of new models and training data. These benchmarks also fall short in assessing how LLM performance changes over time, as they consist of static questions without a temporal dimension. To address these limitations, we propose using future event prediction as a continuous evaluation method to assess LLMs' temporal generalization and forecasting abilities. Our benchmark, Daily Oracle, automatically generates question-answer (QA) pairs from daily news, challenging LLMs to predict "future" event outcomes. Our findings reveal that as pre-training data becomes outdated, LLM performance degrades over time. While Retrieval Augmented Generation (RAG) has the potential to enhance prediction accuracy, the performance degradation pattern persists, highlighting the need for continuous model updates.
CLEAR: Error Analysis via LLM-as-a-Judge Made Easy
The evaluation of Large Language Models (LLMs) increasingly relies on other LLMs acting as judges. However, current evaluation paradigms typically yield a single score or ranking, answering which model is better but not why. While essential for benchmarking, these top-level scores obscure the specific, actionable reasons behind a model's performance. To bridge this gap, we introduce CLEAR, an interactive, open-source package for LLM-based error analysis. CLEAR first generates per-instance textual feedback, then it creates a set of system-level error issues, and quantifies the prevalence of each identified issue. Our package also provides users with an interactive dashboard that allows for a comprehensive error analysis through aggregate visualizations, applies interactive filters to isolate specific issues or score ranges, and drills down to the individual instances that exemplify a particular behavioral pattern. We demonstrate CLEAR analysis for RAG and Math benchmarks, and showcase its utility through a user case study.
Cheaply Evaluating Inference Efficiency Metrics for Autoregressive Transformer APIs
Large language models (LLMs) power many state-of-the-art systems in natural language processing. However, these models are extremely computationally expensive, even at inference time, raising the natural question: when is the extra cost of deploying a larger model worth the anticipated boost in capabilities? Better understanding this tradeoff fundamentally could benefit from an inference efficiency metric that is both (i) easily comparable across models from different providers, and (ii) representative of the true cost of running queries in an isolated performance environment. Unfortunately, access to LLMs today is largely restricted to black-box text generation APIs and raw runtimes measured through this interface do not satisfy these desiderata: model providers can apply various software and hardware optimizations orthogonal to the model, and models served on shared infrastructure are susceptible to performance contention. To circumvent these problems, we propose a new metric for comparing inference efficiency across models. This metric puts models on equal footing as though they were served (i) on uniform hardware and software, and (ii) without performance contention. We call this metric the idealized runtime, and we propose a methodology to efficiently estimate this metric for autoregressive Transformer models. We also propose cost-aware variants that incorporate the number of accelerators needed to serve the model. Using these metrics, we compare ten state-of-the-art LLMs to provide the first analysis of inference efficiency-capability tradeoffs; we make several observations from this analysis, including the fact that the superior inference runtime performance of certain APIs is often a byproduct of optimizations within the API rather than the underlying model. Our methodology also facilitates the efficient comparison of different software and hardware stacks.
Improving Text-to-SQL Evaluation Methodology
To be informative, an evaluation must measure how well systems generalize to realistic unseen data. We identify limitations of and propose improvements to current evaluations of text-to-SQL systems. First, we compare human-generated and automatically generated questions, characterizing properties of queries necessary for real-world applications. To facilitate evaluation on multiple datasets, we release standardized and improved versions of seven existing datasets and one new text-to-SQL dataset. Second, we show that the current division of data into training and test sets measures robustness to variations in the way questions are asked, but only partially tests how well systems generalize to new queries; therefore, we propose a complementary dataset split for evaluation of future work. Finally, we demonstrate how the common practice of anonymizing variables during evaluation removes an important challenge of the task. Our observations highlight key difficulties, and our methodology enables effective measurement of future development.
QGEval: A Benchmark for Question Generation Evaluation
Automatically generated questions often suffer from problems such as unclear expression or factual inaccuracies, requiring a reliable and comprehensive evaluation of their quality. Human evaluation is frequently used in the field of question generation (QG) and is one of the most accurate evaluation methods. It also serves as the standard for automatic metrics. However, there is a lack of unified evaluation criteria, which hampers the development of both QG technologies and automatic evaluation methods. To address this, we propose QGEval, a multi-dimensional Evaluation benchmark for Question Generation, which evaluates both generated questions and existing automatic metrics across 7 dimensions: fluency, clarity, conciseness, relevance, consistency, answerability, and answer consistency. We demonstrate the appropriateness of these dimensions by examining their correlations and distinctions. Analysis with QGEval reveals that 1) most QG models perform unsatisfactorily in terms of answerability and answer consistency, and 2) existing metrics fail to align well with human assessments when evaluating generated questions across the 7 dimensions. We expect this work to foster the development of both QG technologies and automatic metrics for QG.
MetaMetrics: Calibrating Metrics For Generation Tasks Using Human Preferences
Understanding the quality of a performance evaluation metric is crucial for ensuring that model outputs align with human preferences. However, it remains unclear how well each metric captures the diverse aspects of these preferences, as metrics often excel in one particular area but not across all dimensions. To address this, it is essential to systematically calibrate metrics to specific aspects of human preference, catering to the unique characteristics of each aspect. We introduce MetaMetrics, a calibrated meta-metric designed to evaluate generation tasks across different modalities in a supervised manner. MetaMetrics optimizes the combination of existing metrics to enhance their alignment with human preferences. Our metric demonstrates flexibility and effectiveness in both language and vision downstream tasks, showing significant benefits across various multilingual and multi-domain scenarios. MetaMetrics aligns closely with human preferences and is highly extendable and easily integrable into any application. This makes MetaMetrics a powerful tool for improving the evaluation of generation tasks, ensuring that metrics are more representative of human judgment across diverse contexts.
CoReQA: Uncovering Potentials of Language Models in Code Repository Question Answering
Large language models that enhance software development tasks, such as code generation, code completion, and code question answering (QA), have been extensively studied in both academia and the industry. The models are integrated into popular intelligent IDEs like JetBrains and Cursor. Current benchmarks for evaluating models' code comprehension capabilities primarily focus on code generation or completion, often neglecting QA, which is a crucial aspect of understanding code. Existing code QA benchmarks are derived from code comments with predefined patterns (e.g., CodeQA) or focus on specific domains, such as education (e.g., CS1QA). These benchmarks fail to capture the real-world complexity of software engineering and user requirements for understanding code repositories. To address this gap, we introduce CoReQA, a benchmark for Code Repository-level question answering, constructed from GitHub issues and comments from 176 popular repositories across four programming languages. Since questions and answers may include both natural language and code snippets, traditional evaluation metrics such as BLEU are inadequate for assessing repository-level QA performance. Thus, we provide an LLM-as-a-judge framework to evaluate QA performance from five aspects. Based on CoReQA, we evaluate the performance of three baselines, including two short-context models using generic retrieval strategies and one long-context model that utilizes the entire repository context. Evaluation results show that state-of-the-art proprietary and long-context models struggle to address repository-level questions effectively. Our analysis highlights the limitations of language models in assisting developers in understanding repositories and suggests future directions for improving repository comprehension systems through effective context retrieval methodologies.
SecBench: A Comprehensive Multi-Dimensional Benchmarking Dataset for LLMs in Cybersecurity
Evaluating Large Language Models (LLMs) is crucial for understanding their capabilities and limitations across various applications, including natural language processing and code generation. Existing benchmarks like MMLU, C-Eval, and HumanEval assess general LLM performance but lack focus on specific expert domains such as cybersecurity. Previous attempts to create cybersecurity datasets have faced limitations, including insufficient data volume and a reliance on multiple-choice questions (MCQs). To address these gaps, we propose SecBench, a multi-dimensional benchmarking dataset designed to evaluate LLMs in the cybersecurity domain. SecBench includes questions in various formats (MCQs and short-answer questions (SAQs)), at different capability levels (Knowledge Retention and Logical Reasoning), in multiple languages (Chinese and English), and across various sub-domains. The dataset was constructed by collecting high-quality data from open sources and organizing a Cybersecurity Question Design Contest, resulting in 44,823 MCQs and 3,087 SAQs. Particularly, we used the powerful while cost-effective LLMs to (1). label the data and (2). constructing a grading agent for automatic evaluation of SAQs. Benchmarking results on 16 SOTA LLMs demonstrate the usability of SecBench, which is arguably the largest and most comprehensive benchmark dataset for LLMs in cybersecurity. More information about SecBench can be found at our website, and the dataset can be accessed via the artifact link.
Can Agent Conquer Web? Exploring the Frontiers of ChatGPT Atlas Agent in Web Games
OpenAI's ChatGPT Atlas introduces new capabilities for web interaction, enabling the model to analyze webpages, process user intents, and execute cursor and keyboard inputs directly within the browser. While its capacity for information retrieval tasks has been demonstrated, its performance in dynamic, interactive environments remains less explored. In this study, we conduct an early evaluation of Atlas's web interaction capabilities using browser-based games as test scenarios, including Google's T-Rex Runner, Sudoku, Flappy Bird, and Stein.world. We employ in-game performance scores as quantitative metrics to assess performance across different task types. Our results show that Atlas performs strongly in logical reasoning tasks like Sudoku, completing puzzles significantly faster than human baselines, but struggles substantially in real-time games requiring precise timing and motor control, often failing to progress beyond initial obstacles. These findings suggest that while Atlas demonstrates capable analytical processing, there remain notable limitations in dynamic web environments requiring real-time interaction. The website of our project can be found at https://atlas-game-eval.github.io.
OmniBench-RAG: A Multi-Domain Evaluation Platform for Retrieval-Augmented Generation Tools
While Retrieval Augmented Generation (RAG) is now widely adopted to enhance LLMs, evaluating its true performance benefits in a reproducible and interpretable way remains a major hurdle. Existing methods often fall short: they lack domain coverage, employ coarse metrics that miss sub document precision, and fail to capture computational trade offs. Most critically, they provide no standardized framework for comparing RAG effectiveness across different models and domains. We introduce OmniBench RAG, a novel automated platform for multi domain evaluation of RAG systems. The platform quantifies performance gains across accuracy and efficiency dimensions, spanning nine knowledge fields including culture, geography, and health. We introduce two standardized metrics: Improvements (accuracy gains) and Transformation (efficiency differences between pre RAG and post RAG models), enabling reproducible comparisons across models and tasks. The platform features dynamic test generation, modular evaluation pipelines, and automated knowledge base construction. Our evaluation reveals striking variability in RAG effectiveness, from significant gains in culture to declines in mathematics, highlighting the critical importance of systematic, domain aware assessment. A demonstration video is available at: https://www.youtube.com/watch?v=BZx83QFcTCI. Code and datasets: https://github.com/Garnett-Liang/Omnibench-RAG.
SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models
In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose SALAD-Bench, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under https://github.com/OpenSafetyLab/SALAD-BENCH. Warning: this paper includes examples that may be offensive or harmful.
Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security
As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.
Search Engines in an AI Era: The False Promise of Factual and Verifiable Source-Cited Responses
Large Language Model (LLM)-based applications are graduating from research prototypes to products serving millions of users, influencing how people write and consume information. A prominent example is the appearance of Answer Engines: LLM-based generative search engines supplanting traditional search engines. Answer engines not only retrieve relevant sources to a user query but synthesize answer summaries that cite the sources. To understand these systems' limitations, we first conducted a study with 21 participants, evaluating interactions with answer vs. traditional search engines and identifying 16 answer engine limitations. From these insights, we propose 16 answer engine design recommendations, linked to 8 metrics. An automated evaluation implementing our metrics on three popular engines (You.com, Perplexity.ai, BingChat) quantifies common limitations (e.g., frequent hallucination, inaccurate citation) and unique features (e.g., variation in answer confidence), with results mirroring user study insights. We release our Answer Engine Evaluation benchmark (AEE) to facilitate transparent evaluation of LLM-based applications.
Systematic Assessment of Tabular Data Synthesis Algorithms
Data synthesis has been advocated as an important approach for utilizing data while protecting data privacy. A large number of tabular data synthesis algorithms (which we call synthesizers) have been proposed. Some synthesizers satisfy Differential Privacy, while others aim to provide privacy in a heuristic fashion. A comprehensive understanding of the strengths and weaknesses of these synthesizers remains elusive due to drawbacks in evaluation metrics and missing head-to-head comparisons of newly developed synthesizers that take advantage of diffusion models and large language models with state-of-the-art marginal-based synthesizers. In this paper, we present a systematic evaluation framework for assessing tabular data synthesis algorithms. Specifically, we examine and critique existing evaluation metrics, and introduce a set of new metrics in terms of fidelity, privacy, and utility to address their limitations. Based on the proposed metrics, we also devise a unified objective for tuning, which can consistently improve the quality of synthetic data for all methods. We conducted extensive evaluations of 8 different types of synthesizers on 12 real-world datasets and identified some interesting findings, which offer new directions for privacy-preserving data synthesis.
TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks
We present TIGERScore, a Trained metric that follows Instruction Guidance to perform Explainable, and Reference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by the natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. The dataset consists of 48K quadruple in the form of (instruction, input, system output rightarrow error analysis). We collected the `system outputs' through diverse channels to cover different types of errors. To quantitatively assess our metric, we evaluate its correlation with human ratings on 5 held-in datasets, 2 held-out datasets and show that TIGERScore can achieve the highest overall Spearman's correlation with human ratings across these datasets and outperforms other metrics significantly. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8\% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.
MermaidSeqBench: An Evaluation Benchmark for LLM-to-Mermaid Sequence Diagram Generation
Large language models (LLMs) have demonstrated excellent capabilities in generating structured diagrams from natural language descriptions. In particular, they have shown great promise in generating sequence diagrams for software engineering, typically represented in a text-based syntax such as Mermaid. However, systematic evaluations in this space remain underdeveloped as there is a lack of existing benchmarks to assess the LLM's correctness in this task. To address this shortcoming, we introduce MermaidSeqBench, a human-verified and LLM-synthetically-extended benchmark for assessing an LLM's capabilities in generating Mermaid sequence diagrams from textual prompts. The benchmark consists of a core set of 132 samples, starting from a small set of manually crafted and verified flows. These were expanded via a hybrid methodology combining human annotation, in-context LLM prompting, and rule-based variation generation. Our benchmark uses an LLM-as-a-judge model to assess Mermaid sequence diagram generation across fine-grained metrics, including syntax correctness, activation handling, error handling, and practical usability. We perform initial evaluations on numerous state-of-the-art LLMs and utilize multiple LLM judge models to demonstrate the effectiveness and flexibility of our benchmark. Our results reveal significant capability gaps across models and evaluation modes. Our proposed benchmark provides a foundation for advancing research in structured diagram generation and for developing more rigorous, fine-grained evaluation methodologies.
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.
WebDevJudge: Evaluating (M)LLMs as Critiques for Web Development Quality
The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alternative to human evaluation, demonstrating strong performance on well-defined tasks. However, its reliability in open-ended tasks with dynamic environments and complex interactions remains unexplored. To bridge the gap, we introduce WebDevJudge, a systematic benchmark for assessing LLM-as-a-judge performance in web development, with support for both non-interactive evaluation based on static observations and continuous interactive evaluation with a dynamic web environment. WebDevJudge comprises human preference labels over paired web implementations, annotated with structured and query-grounded rubrics to ensure high-quality ground truth. Using this benchmark, we comprehensively evaluate various evaluators, including LLMs, MLLMs, and agentic workflows. We systematically investigate the impact of different paradigms and guidance mechanisms. Our experiments reveal a significant gap between LLM judges and human experts. In-depth analysis indicates this gap stems from fundamental model limitations, including failures in recognizing functional equivalence, verifying task feasibility, and mitigating bias. Overall, WebDevJudge presents a significant challenge to LLM-as-a-judge, offering insights to guide future research toward developing more reliable and capable automated evaluators for complicated scenarios. Code and data are available at https://github.com/lcy2723/WebDevJudge.
GSO: Challenging Software Optimization Tasks for Evaluating SWE-Agents
Developing high-performance software is a complex task that requires specialized expertise. We introduce GSO, a benchmark for evaluating language models' capabilities in developing high-performance software. We develop an automated pipeline that generates and executes performance tests to analyze repository commit histories to identify 102 challenging optimization tasks across 10 codebases, spanning diverse domains and programming languages. An agent is provided with a codebase and performance test as a precise specification, and tasked to improve the runtime efficiency, which is measured against the expert developer optimization. Our quantitative evaluation reveals that leading SWE-Agents struggle significantly, achieving less than 5% success rate, with limited improvements even with inference-time scaling. Our qualitative analysis identifies key failure modes, including difficulties with low-level languages, practicing lazy optimization strategies, and challenges in accurately localizing bottlenecks. We release the code and artifacts of our benchmark along with agent trajectories to enable future research.
Safurai 001: New Qualitative Approach for Code LLM Evaluation
This paper presents Safurai-001, a new Large Language Model (LLM) with significant potential in the domain of coding assistance. Driven by recent advancements in coding LLMs, Safurai-001 competes in performance with the latest models like WizardCoder [Xu et al., 2023], PanguCoder [Shen et al., 2023] and Phi-1 [Gunasekar et al., 2023] but aims to deliver a more conversational interaction. By capitalizing on the progress in data engineering (including latest techniques of data transformation and prompt engineering) and instruction tuning, this new model promises to stand toe-to-toe with recent closed and open source developments. Recognizing the need for an efficacious evaluation metric for coding LLMs, this paper also introduces GPT4-based MultiParameters, an evaluation benchmark that harnesses varied parameters to present a comprehensive insight into the models functioning and performance. Our assessment shows that Safurai-001 can outperform GPT-3.5 by 1.58% and WizardCoder by 18.78% in the Code Readability parameter and more.
Pretraining on the Test Set Is No Longer All You Need: A Debate-Driven Approach to QA Benchmarks
As frontier language models increasingly saturate standard QA benchmarks, concerns about data contamination, memorization, and escalating dataset creation costs persist. We propose a debate-driven evaluation paradigm that transforms any existing QA dataset into structured adversarial debates--where one model is given the official answer to defend, and another constructs and defends an alternative answer--adjudicated by a judge model blind to the correct solution. By forcing multi-round argumentation, this approach substantially increases difficulty while penalizing shallow memorization, yet reuses QA items to reduce curation overhead. We make two main contributions: (1) an evaluation pipeline to systematically convert QA tasks into debate-based assessments, and (2) a public benchmark that demonstrates our paradigm's effectiveness on a subset of MMLU-Pro questions, complete with standardized protocols and reference models. Empirical results validate the robustness of the method and its effectiveness against data contamination--a Llama 3.1 model fine-tuned on test questions showed dramatic accuracy improvements (50% -> 82%) but performed worse in debates. Results also show that even weaker judges can reliably differentiate stronger debaters, highlighting how debate-based evaluation can scale to future, more capable systems while maintaining a fraction of the cost of creating new benchmarks. Overall, our framework underscores that "pretraining on the test set is no longer all you need," offering a sustainable path for measuring the genuine reasoning ability of advanced language models.
Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that go beyond English centric benchmarks and address the requirements of linguistically diverse regions such as India. We present EKA-EVAL, a unified and production-ready evaluation framework that integrates over 35 benchmarks, including 10 Indic-specific datasets, spanning categories like reasoning, mathematics, tool use, long-context understanding, and reading comprehension. Compared to existing Indian language evaluation tools, EKA-EVAL offers broader benchmark coverage, with built-in support for distributed inference, quantization, and multi-GPU usage. Our systematic comparison positions EKA-EVAL as the first end-to-end, extensible evaluation suite tailored for both global and Indic LLMs, significantly lowering the barrier to multilingual benchmarking. The framework is open-source and publicly available at https://github.com/lingo-iitgn/ eka-eval and a part of ongoing EKA initiative (https://eka.soket.ai), which aims to scale up to over 100 benchmarks and establish a robust, multilingual evaluation ecosystem for LLMs.
Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics
Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics' capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations.
SemScore: Automated Evaluation of Instruction-Tuned LLMs based on Semantic Textual Similarity
Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable advancements in their ability to generate fitting responses to natural language instructions. However, many current works rely on manual evaluation to judge the quality of generated responses. Since such manual evaluation is time-consuming, it does not easily scale to the evaluation of multiple models and model variants. In this short paper, we propose a straightforward but remarkably effective evaluation metric called SemScore, in which we directly compare model outputs to gold target responses using semantic textual similarity (STS). We conduct a comparative evaluation of the model outputs of 12 prominent instruction-tuned LLMs using 8 widely-used evaluation metrics for text generation. We find that our proposed SemScore metric outperforms all other, in many cases more complex, evaluation metrics in terms of correlation to human evaluation. These findings indicate the utility of our proposed metric for the evaluation of instruction-tuned LLMs.
RES-Q: Evaluating Code-Editing Large Language Model Systems at the Repository Scale
The instruction-following ability of Large Language Models (LLMs) has cultivated a class of LLM-based systems capable of approaching complex tasks such as making edits to large code repositories. Due to the high sensitivity and unpredictability of LLM behavior in response to changes in prompting, robust evaluation tools are needed to drive future iteration of these systems. We propose RES-Q, a natural language instruction-based benchmark for evaluating Repository Editing Systems, which consists of 100 repository editing tasks derived from real GitHub commits. Given an edit instruction and a code repository, RES-Q evaluates an LLM system's ability to gather information and construct an edit that satisfies the criteria set by the instruction. We argue that evaluating LLMs in this way addresses issues with traditional benchmarks and provides a more holistic assessment of a model's abilities. We evaluate various state-of-the-art LLMs as language agents in a repository-editing system built on Qurrent OS, our language agent development software. Despite their 1% pass@1 performance difference on HumanEval, we find Claude Sonnet 3.5 outperforms GPT-4o by 12% pass@1 on RES-Q, indicating RES-Q's capacity to differentiate model capability as traditional benchmarks approach saturation. We further investigate token efficiency, performance relationships with existing benchmarks, and interesting disparities between closed and open-source LLMs. Code and dataset are available at https://github.com/Qurrent-AI/RES-Q.
Instruction-Following Evaluation for Large Language Models
One core capability of Large Language Models (LLMs) is to follow natural language instructions. However, the evaluation of such abilities is not standardized: Human evaluations are expensive, slow, and not objectively reproducible, while LLM-based auto-evaluation is potentially biased or limited by the ability of the evaluator LLM. To overcome these issues, we introduce Instruction-Following Eval (IFEval) for large language models. IFEval is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of "verifiable instructions" such as "write in more than 400 words" and "mention the keyword of AI at least 3 times". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. We show evaluation results of two widely available LLMs on the market. Our code and data can be found at https://github.com/google-research/google-research/tree/master/instruction_following_eval
SysLLMatic: Large Language Models are Software System Optimizers
Automatic software system optimization can improve software speed, reduce operating costs, and save energy. Traditional approaches to optimization rely on manual tuning and compiler heuristics, limiting their ability to generalize across diverse codebases and system contexts. Recent methods using Large Language Models (LLMs) offer automation to address these limitations, but often fail to scale to the complexity of real-world software systems and applications. We present SysLLMatic, a system that integrates LLMs with profiling-guided feedback and system performance insights to automatically optimize software code. We evaluate it on three benchmark suites: HumanEval_CPP (competitive programming in C++), SciMark2 (scientific kernels in Java), and DaCapoBench (large-scale software systems in Java). Results show that SysLLMatic can improve system performance, including latency, throughput, energy efficiency, memory usage, and CPU utilization. It consistently outperforms state-of-the-art LLM baselines on microbenchmarks. On large-scale application codes, it surpasses traditional compiler optimizations, achieving average relative improvements of 1.85x in latency and 2.24x in throughput. Our findings demonstrate that LLMs, guided by principled systems thinking and appropriate performance diagnostics, can serve as viable software system optimizers. We further identify limitations of our approach and the challenges involved in handling complex applications. This work provides a foundation for generating optimized code across various languages, benchmarks, and program sizes in a principled manner.
Improving Consistency in Retrieval-Augmented Systems with Group Similarity Rewards
RAG systems are increasingly deployed in high-stakes domains where users expect outputs to be consistent across semantically equivalent queries. However, existing systems often exhibit significant inconsistencies due to variability in both the retriever and generator (LLM), undermining trust and reliability. In this work, we focus on information consistency, i.e., the requirement that outputs convey the same core content across semantically equivalent inputs. We introduce a principled evaluation framework that decomposes RAG consistency into retriever-level, generator-level, and end-to-end components, helping identify inconsistency sources. To improve consistency, we propose Paraphrased Set Group Relative Policy Optimization (PS-GRPO), an RL approach that leverages multiple rollouts across paraphrased set to assign group similarity rewards. We leverage PS-GRPO to achieve Information Consistent RAG (Con-RAG), training the generator to produce consistent outputs across paraphrased queries and remain robust to retrieval-induced variability. Because exact reward computation over paraphrase sets is computationally expensive, we also introduce a scalable approximation method that retains effectiveness while enabling efficient, large-scale training. Empirical evaluations across short-form, multi-hop, and long-form QA benchmarks demonstrate that Con-RAG significantly improves both consistency and accuracy over strong baselines, even in the absence of explicit ground-truth supervision. Our work provides practical solutions for evaluating and building reliable RAG systems for safety-critical deployments.
Process for Adapting Language Models to Society (PALMS) with Values-Targeted Datasets
Language models can generate harmful and biased outputs and exhibit undesirable behavior according to a given cultural context. We propose a Process for Adapting Language Models to Society (PALMS) with Values-Targeted Datasets, an iterative process to significantly change model behavior by crafting and fine-tuning on a dataset that reflects a predetermined set of target values. We evaluate our process using three metrics: quantitative metrics with human evaluations that score output adherence to a target value, toxicity scoring on outputs; and qualitative metrics analyzing the most common word associated with a given social category. Through each iteration, we add additional training dataset examples based on observed shortcomings from evaluations. PALMS performs significantly better on all metrics compared to baseline and control models for a broad range of GPT-3 language model sizes without compromising capability integrity. We find that the effectiveness of PALMS increases with model size. We show that significantly adjusting language model behavior is feasible with a small, hand-curated dataset.
CS-Eval: A Comprehensive Large Language Model Benchmark for CyberSecurity
Over the past year, there has been a notable rise in the use of large language models (LLMs) for academic research and industrial practices within the cybersecurity field. However, it remains a lack of comprehensive and publicly accessible benchmarks to evaluate the performance of LLMs on cybersecurity tasks. To address this gap, we introduce CS-Eval, a publicly accessible, comprehensive and bilingual LLM benchmark specifically designed for cybersecurity. CS-Eval synthesizes the research hotspots from academia and practical applications from industry, curating a diverse set of high-quality questions across 42 categories within cybersecurity, systematically organized into three cognitive levels: knowledge, ability, and application. Through an extensive evaluation of a wide range of LLMs using CS-Eval, we have uncovered valuable insights. For instance, while GPT-4 generally excels overall, other models may outperform it in certain specific subcategories. Additionally, by conducting evaluations over several months, we observed significant improvements in many LLMs' abilities to solve cybersecurity tasks. The benchmarks are now publicly available at https://github.com/CS-EVAL/CS-Eval.
Query Rewriting via LLMs
Query rewriting is a classical technique for transforming complex declarative SQL queries into ``lean'' equivalents that are conducive to (a) faster execution from a performance perspective, and (b) better understanding from a developer perspective. The rewriting is typically achieved via transformation rules, but these rules are limited in scope and difficult to update in a production system. In recent times, LLM-based techniques have also been mooted, but they are prone to both semantic and syntactic errors. We investigate here, how the remarkable cognitive capabilities of LLMs can be leveraged for performant query rewriting while incorporating safeguards and optimizations to ensure correctness and efficiency. Our study shows that these goals can be progressively achieved through incorporation of (a) an ensemble suite of basic prompts, (b) database-sensitive prompts via redundancy removal and selectivity-based rewriting rules, and (c) LLM token probability-guided rewrite paths. Further, a suite of statistical and logic-based tools can be used to guard against errors produced by the model. We have implemented the above LLM-infused techniques in the LITHE system, and evaluated complex analytic queries from multiple benchmarks on contemporary database platforms. The results show significant improvements over SOTA rewriting techniques -- for instance, on TPC-DS, LITHE constructed productive (>1.5x speedup) rewrites for two-thirds of the query suite, delivering four times more coverage than SOTA. Further, the geometric mean of its estimated execution speedups was an order-of-magnitude jump over SOTA performance. In essence, LITHE offers a potent and robust LLM-based intermediary between enterprise applications and database engines.
Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates
LLM-as-a-Judge has been widely applied to evaluate and compare different LLM alignmnet approaches (e.g., RLHF and DPO). However, concerns regarding its reliability have emerged, due to LLM judges' biases and inconsistent decision-making. Previous research has developed evaluation frameworks to assess reliability of LLM judges and their alignment with human preferences. However, the employed evaluation metrics often lack adequate explainability and fail to address LLM internal inconsistency. Additionally, existing studies inadequately explore the impact of various prompt templates when applying LLM-as-a-Judge methods, leading to potentially inconsistent comparisons between different alignment algorithms. In this work, we systematically evaluate LLM-as-a-Judge on alignment tasks by defining more theoretically interpretable evaluation metrics and explicitly mitigating LLM internal inconsistency from reliability metrics. We develop an open-source framework to evaluate, compare, and visualize the reliability and alignment of LLM judges, which facilitates practitioners to choose LLM judges for alignment tasks. In the experiments, we examine effects of diverse prompt templates on LLM-judge reliability and also demonstrate our developed framework by comparing various LLM judges on two common alignment datasets (i.e., TL;DR Summarization and HH-RLHF-Helpfulness). Our results indicate a significant impact of prompt templates on LLM judge performance, as well as a mediocre alignment level between the tested LLM judges and human evaluators.
DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL
Recent text-to-SQL systems powered by large language models (LLMs) have demonstrated remarkable performance in translating natural language queries into SQL. However, these systems often struggle with complex database structures and domain-specific queries, as they primarily focus on enhancing logical reasoning and SQL syntax while overlooking the critical need for comprehensive database understanding. To address this limitation, we propose DB-Explore, a novel framework that systematically aligns LLMs with database knowledge through automated exploration and instruction synthesis. DB-Explore constructs database graphs to capture complex relational schemas, leverages GPT-4 to systematically mine structural patterns and semantic knowledge, and synthesizes instructions to distill this knowledge for efficient fine-tuning of LLMs. Our framework enables comprehensive database understanding through diverse sampling strategies and automated instruction generation, bridging the gap between database structures and language models. Experiments conducted on the SPIDER and BIRD benchmarks validate the effectiveness of DB-Explore, achieving an execution accuracy of 52.1% on BIRD and 84.0% on SPIDER. Notably, our open-source implementation, based on the Qwen2.5-coder-7B model, outperforms multiple GPT-4-driven text-to-SQL systems in comparative evaluations, and achieves near state-of-the-art performance with minimal computational cost.
LLMSecCode: Evaluating Large Language Models for Secure Coding
The rapid deployment of Large Language Models (LLMs) requires careful consideration of their effect on cybersecurity. Our work aims to improve the selection process of LLMs that are suitable for facilitating Secure Coding (SC). This raises challenging research questions, such as (RQ1) Which functionality can streamline the LLM evaluation? (RQ2) What should the evaluation measure? (RQ3) How to attest that the evaluation process is impartial? To address these questions, we introduce LLMSecCode, an open-source evaluation framework designed to assess LLM SC capabilities objectively. We validate the LLMSecCode implementation through experiments. When varying parameters and prompts, we find a 10% and 9% difference in performance, respectively. We also compare some results to reliable external actors, where our results show a 5% difference. We strive to ensure the ease of use of our open-source framework and encourage further development by external actors. With LLMSecCode, we hope to encourage the standardization and benchmarking of LLMs' capabilities in security-oriented code and tasks.
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs
The remarkable performance of models like the OpenAI o1 can be attributed to their ability to emulate human-like long-time thinking during inference. These models employ extended chain-of-thought (CoT) processes, exploring multiple strategies to enhance problem-solving capabilities. However, a critical question remains: How to intelligently and efficiently scale computational resources during testing. This paper presents the first comprehensive study on the prevalent issue of overthinking in these models, where excessive computational resources are allocated for simple problems with minimal benefit. We introduce novel efficiency metrics from both outcome and process perspectives to evaluate the rational use of computational resources by o1-like models. Using a self-training paradigm, we propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy. Experimental results show that our approach successfully reduces computational overhead while preserving model performance across a range of testsets with varying difficulty levels, such as GSM8K, MATH500, GPQA, and AIME.
A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
DependEval: Benchmarking LLMs for Repository Dependency Understanding
While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding (DependEval). Benchmark is based on 15,576 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding.
SciEval: A Multi-Level Large Language Model Evaluation Benchmark for Scientific Research
Recently, there has been growing interest in using Large Language Models (LLMs) for scientific research. Numerous benchmarks have been proposed to evaluate the ability of LLMs for scientific research. However, current benchmarks are mostly based on pre-collected objective questions. This design suffers from data leakage problem and lacks the evaluation of subjective Q/A ability. In this paper, we propose SciEval, a comprehensive and multi-disciplinary evaluation benchmark to address these issues. Based on Bloom's taxonomy, SciEval covers four dimensions to systematically evaluate scientific research ability. In particular, we design a "dynamic" subset based on scientific principles to prevent evaluation from potential data leakage. Both objective and subjective questions are included in SciEval. These characteristics make SciEval a more effective benchmark for scientific research ability evaluation of LLMs. Comprehensive experiments on most advanced LLMs show that, although GPT-4 achieves SOTA performance compared to other LLMs, there is still substantial room for improvement, especially for dynamic questions. The data and codes are now publicly available.
RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for incorporating domain-specific knowledge into user-facing chat applications powered by Large Language Models (LLMs). RAG systems are characterized by (1) a document retriever that queries a domain-specific corpus for context information relevant to an input query, and (2) an LLM that generates a response based on the provided query and context. However, comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets. In response, we introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples. It covers five unique industry-specific domains and various RAG task types. RAGBench examples are sourced from industry corpora such as user manuals, making it particularly relevant for industry applications. Further, we formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains. We release the labeled dataset at https://huggingface.co/datasets/rungalileo/ragbench. RAGBench explainable labels facilitate holistic evaluation of RAG systems, enabling actionable feedback for continuous improvement of production applications. Thorough extensive benchmarking, we find that LLM-based RAG evaluation methods struggle to compete with a finetuned RoBERTa model on the RAG evaluation task. We identify areas where existing approaches fall short and propose the adoption of RAGBench with TRACe towards advancing the state of RAG evaluation systems.
NetPress: Dynamically Generated LLM Benchmarks for Network Applications
Despite growing interest in domain-specific benchmarking of large language models (LLMs) and agents, current evaluations remain limited to static, small-scale datasets, especially in high-stakes tasks like network operations that demand reliability for deployments. We present NetPress, an automated benchmark generation framework for evaluating LLM agents in network applications. NetPress introduces a unified abstraction with state and action, enabling dynamic generation of diverse query sets along with corresponding ground truths. At runtime, users can specify benchmark configurations to generate millions of queries on the fly. In addition to dynamic benchmark construction, NetPress integrates with network emulators to provide realistic environment feedback, supporting comprehensive evaluation across correctness, safety, and latency. We instantiate NetPress on three representative applications, revealing interesting fine-grained differences in agent behavior that static, correctness-only benchmarks often miss. NetPress moves LLM evaluation toward realistic, scalable testing in infrastructure-centric domains, helping close the gap between benchmark performance and real-world deployment readiness. Code is available at https://github.com/Froot-NetSys/NetPress.
TransBench: Benchmarking Machine Translation for Industrial-Scale Applications
Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs.
ReportBench: Evaluating Deep Research Agents via Academic Survey Tasks
The advent of Deep Research agents has substantially reduced the time required for conducting extensive research tasks. However, these tasks inherently demand rigorous standards of factual accuracy and comprehensiveness, necessitating thorough evaluation before widespread adoption. In this paper, we propose ReportBench, a systematic benchmark designed to evaluate the content quality of research reports generated by large language models (LLMs). Our evaluation focuses on two critical dimensions: (1) the quality and relevance of cited literature, and (2) the faithfulness and veracity of the statements within the generated reports. ReportBench leverages high-quality published survey papers available on arXiv as gold-standard references, from which we apply reverse prompt engineering to derive domain-specific prompts and establish a comprehensive evaluation corpus. Furthermore, we develop an agent-based automated framework within ReportBench that systematically analyzes generated reports by extracting citations and statements, checking the faithfulness of cited content against original sources, and validating non-cited claims using web-based resources. Empirical evaluations demonstrate that commercial Deep Research agents such as those developed by OpenAI and Google consistently generate more comprehensive and reliable reports than standalone LLMs augmented with search or browsing tools. However, there remains substantial room for improvement in terms of the breadth and depth of research coverage, as well as factual consistency. The complete code and data will be released at the following link: https://github.com/ByteDance-BandAI/ReportBench
Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol
Benchmarks are essential for consistent evaluation and reproducibility. The integration of Artificial Intelligence into Software Engineering (AI4SE) has given rise to numerous benchmarks for tasks such as code generation and bug fixing. However, this surge presents challenges: (1) scattered benchmark knowledge across tasks, (2) difficulty in selecting relevant benchmarks, (3) the absence of a uniform standard for benchmark development, and (4) limitations of existing benchmarks. In this paper, we review 173 studies and identify 204 AI4SE benchmarks. We classify these benchmarks, analyze their limitations, and expose gaps in practices. Based on our review, we created BenchScout, a semantic search tool to find relevant benchmarks, using automated clustering of the contexts from associated studies. We conducted a user study with 22 participants to evaluate BenchScout's usability, effectiveness, and intuitiveness which resulted in average scores of 4.5, 4.0, and 4.1 out of 5. To advance benchmarking standards, we propose BenchFrame, a unified method to enhance benchmark quality. As a case study, we applied BenchFrame to the HumanEval benchmark and addressed its main limitations. This led to HumanEvalNext, featuring (1) corrected errors, (2) improved language conversion, (3) expanded test coverage, and (4) increased difficulty. We then evaluated ten state-of-the-art code language models on HumanEval, HumanEvalPlus, and HumanEvalNext. On HumanEvalNext, models showed a pass@1 score reduction of 31.22% and 19.94% compared to HumanEval and HumanEvalPlus, respectively.
Improving Automatic VQA Evaluation Using Large Language Models
8 years after the visual question answering (VQA) task was proposed, accuracy remains the primary metric for automatic evaluation. VQA Accuracy has been effective so far in the IID evaluation setting. However, our community is undergoing a shift towards open-ended generative models and OOD evaluation. In this new paradigm, the existing VQA Accuracy metric is overly stringent and underestimates the performance of VQA systems. Thus, there is a need to develop more robust automatic VQA metrics that serve as a proxy for human judgment. In this work, we propose to leverage the in-context learning capabilities of instruction-tuned large language models (LLMs) to build a better VQA metric. We formulate VQA evaluation as an answer-rating task where the LLM is instructed to score the accuracy of a candidate answer given a set of reference answers. We demonstrate the proposed metric better correlates with human judgment compared to existing metrics across several VQA models and benchmarks. We hope wide adoption of our metric will contribute to better estimating the research progress on the VQA task. We plan to release the evaluation code and collected human judgments.
BenchHub: A Unified Benchmark Suite for Holistic and Customizable LLM Evaluation
As large language models (LLMs) continue to advance, the need for up-to-date and well-organized benchmarks becomes increasingly critical. However, many existing datasets are scattered, difficult to manage, and make it challenging to perform evaluations tailored to specific needs or domains, despite the growing importance of domain-specific models in areas such as math or code. In this paper, we introduce BenchHub, a dynamic benchmark repository that empowers researchers and developers to evaluate LLMs more effectively. BenchHub aggregates and automatically classifies benchmark datasets from diverse domains, integrating 303K questions across 38 benchmarks. It is designed to support continuous updates and scalable data management, enabling flexible and customizable evaluation tailored to various domains or use cases. Through extensive experiments with various LLM families, we demonstrate that model performance varies significantly across domain-specific subsets, emphasizing the importance of domain-aware benchmarking. We believe BenchHub can encourage better dataset reuse, more transparent model comparisons, and easier identification of underrepresented areas in existing benchmarks, offering a critical infrastructure for advancing LLM evaluation research.
Machine Generated Product Advertisements: Benchmarking LLMs Against Human Performance
This study compares the performance of AI-generated and human-written product descriptions using a multifaceted evaluation model. We analyze descriptions for 100 products generated by four AI models (Gemma 2B, LLAMA, GPT2, and ChatGPT 4) with and without sample descriptions, against human-written descriptions. Our evaluation metrics include sentiment, readability, persuasiveness, Search Engine Optimization(SEO), clarity, emotional appeal, and call-to-action effectiveness. The results indicate that ChatGPT 4 performs the best. In contrast, other models demonstrate significant shortcomings, producing incoherent and illogical output that lacks logical structure and contextual relevance. These models struggle to maintain focus on the product being described, resulting in disjointed sentences that do not convey meaningful information. This research provides insights into the current capabilities and limitations of AI in the creation of content for e-Commerce.
WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
We introduce WildBench, an automated evaluation framework designed to benchmark large language models (LLMs) using challenging, real-world user queries. WildBench consists of 1,024 tasks carefully selected from over one million human-chatbot conversation logs. For automated evaluation with WildBench, we have developed two metrics, WB-Reward and WB-Score, which are computable using advanced LLMs such as GPT-4-turbo. WildBench evaluation uses task-specific checklists to evaluate model outputs systematically and provides structured explanations that justify the scores and comparisons, resulting in more reliable and interpretable automatic judgments. WB-Reward employs fine-grained pairwise comparisons between model responses, generating five potential outcomes: much better, slightly better, slightly worse, much worse, or a tie. Unlike previous evaluations that employed a single baseline model, we selected three baseline models at varying performance levels to ensure a comprehensive pairwise evaluation. Additionally, we propose a simple method to mitigate length bias, by converting outcomes of ``slightly better/worse'' to ``tie'' if the winner response exceeds the loser one by more than K characters. WB-Score evaluates the quality of model outputs individually, making it a fast and cost-efficient evaluation metric. WildBench results demonstrate a strong correlation with the human-voted Elo ratings from Chatbot Arena on hard tasks. Specifically, WB-Reward achieves a Pearson correlation of 0.98 with top-ranking models. Additionally, WB-Score reaches 0.95, surpassing both ArenaHard's 0.91 and AlpacaEval2.0's 0.89 for length-controlled win rates, as well as the 0.87 for regular win rates.
DebugBench: Evaluating Debugging Capability of Large Language Models
Large Language Models (LLMs) have demonstrated exceptional coding capability. However, as another critical component of programming proficiency, the debugging capability of LLMs remains relatively unexplored. Previous evaluations of LLMs' debugging ability are significantly limited by the risk of data leakage, the scale of the dataset, and the variety of tested bugs. To overcome these deficiencies, we introduce `DebugBench', an LLM debugging benchmark consisting of 4,253 instances. It covers four major bug categories and 18 minor types in C++, Java, and Python. To construct DebugBench, we collect code snippets from the LeetCode community, implant bugs into source data with GPT-4, and assure rigorous quality checks. We evaluate two commercial and three open-source models in a zero-shot scenario. We find that (1) while closed-source models like GPT-4 exhibit inferior debugging performance compared to humans, open-source models such as Code Llama fail to attain any pass rate scores; (2) the complexity of debugging notably fluctuates depending on the bug category; (3) incorporating runtime feedback has a clear impact on debugging performance which is not always helpful. As an extension, we also compare LLM debugging and code generation, revealing a strong correlation between them for closed-source models. These findings will benefit the development of LLMs in debugging.
Pi-SQL: Enhancing Text-to-SQL with Fine-Grained Guidance from Pivot Programming Languages
Text-to-SQL transforms the user queries from natural language to executable SQL programs, enabling non-experts to interact with complex databases. Existing prompt-based methods craft meticulous text guidelines and examples to facilitate SQL generation, but their accuracy is hindered by the large semantic gap between the texts and the low-resource SQL programs. In this work, we propose Pi-SQL, which incorporates the high-resource Python program as a pivot to bridge between the natural language query and SQL program. In particular, Pi-SQL first generates Python programs that provide fine-grained step-by-step guidelines in their code blocks or comments, and then produces an SQL program following the guidance of each Python program. The final SQL program matches the reference Python program's query results and, through selection from candidates generated by different strategies, achieves superior execution speed, with a reward-based valid efficiency score up to 4.55 higher than the best-performing baseline. Extensive experiments demonstrate the effectiveness of Pi-SQL, which improves the execution accuracy of the best-performing baseline by up to 3.20.
CoderUJB: An Executable and Unified Java Benchmark for Practical Programming Scenarios
In the evolving landscape of large language models (LLMs) tailored for software engineering, the need for benchmarks that accurately reflect real-world development scenarios is paramount. Current benchmarks are either too simplistic or fail to capture the multi-tasking nature of software development. To address this, we introduce CoderUJB, a new benchmark designed to evaluate LLMs across diverse Java programming tasks that are executable and reflective of actual development scenarios, acknowledging Java's prevalence in real-world software production. CoderUJB comprises 2,239 programming questions derived from 17 real open-source Java projects and spans five practical programming tasks. Our empirical study on this benchmark investigates the coding abilities of various open-source and closed-source LLMs, examining the effects of continued pre-training in specific programming languages code and instruction fine-tuning on their performance. The findings indicate that while LLMs exhibit strong potential, challenges remain, particularly in non-functional code generation (e.g., test generation and defect detection). Importantly, our results advise caution in the specific programming languages continued pre-training and instruction fine-tuning, as these techniques could hinder model performance on certain tasks, suggesting the need for more nuanced strategies. CoderUJB thus marks a significant step towards more realistic evaluations of programming capabilities in LLMs, and our study provides valuable insights for the future development of these models in software engineering.
BEAVER: An Enterprise Benchmark for Text-to-SQL
Existing text-to-SQL benchmarks have largely been constructed from web tables with human-generated question-SQL pairs. LLMs typically show strong results on these benchmarks, leading to a belief that LLMs are effective at text-to-SQL tasks. However, how these results transfer to enterprise settings is unclear because tables in enterprise databases might differ substantially from web tables in structure and content. To contend with this problem, we introduce a new dataset BEAVER, the first enterprise text-to-SQL benchmark sourced from real private enterprise data warehouses. This dataset includes natural language queries and their correct SQL statements, which we collected from actual query logs. We then benchmark off-the-shelf LLMs on this dataset. LLMs perform poorly, even when augmented with standard prompt engineering and RAG techniques. We identify three main reasons for the poor performance: (1) schemas of enterprise tables are more complex than the schemas in public data, resulting in SQL-generation tasks intrinsically harder; (2) business-oriented questions are often more complex, requiring joins over multiple tables, aggregations, and nested queries; (3) public LLMs cannot train on private enterprise data warehouses that are not publicly accessible, and therefore it is difficult for the model to learn to solve (1) and (2). We believe BEAVER will facilitate future research in building text-to-SQL systems that perform better in enterprise settings.
TRUE: Re-evaluating Factual Consistency Evaluation
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.
You Don't Know Until You Click:Automated GUI Testing for Production-Ready Software Evaluation
Large Language Models (LLMs) and code agents in software development are rapidly evolving from generating isolated code snippets to producing full-fledged software applications with graphical interfaces, interactive logic, and dynamic behaviors. However, current benchmarks fall short in evaluating such production-ready software, as they often rely on static checks or binary pass/fail scripts, failing to capture the interactive behaviors and runtime dynamics that define real-world usability - qualities that only emerge when an application is actively used. This is the blind spot of current evaluation: you don't know if an app works until you click through it, interact with it, and observe how it responds. To bridge this gap, we introduce RealDevWorld, a novel evaluation framework for automated end-to-end assessment of LLMs' ability to generate production-ready repositories from scratch. It features two key components: (1) RealDevBench, a diverse collection of 194 open-ended software engineering tasks across multiple domains, incorporating multimodal elements to reflect real-world complexity; and (2) AppEvalPilot, a new agent-as-a-judge evaluation system that simulates realistic, GUI-based user interactions to automatically and holistically assess software functional correctness, visual fidelity, and runtime behavior. The framework delivers fine-grained, task-specific diagnostic feedback, supporting nuanced evaluation beyond simple success/failure judgments. Empirical results show that RealDevWorld delivers effective, automatic, and human-aligned evaluations, achieving an accuracy of 0.92 and a correlation of 0.85 with expert human assessments, while significantly reducing the reliance on manual review. This enables scalable, human-aligned assessment of production-level software generated by LLMs. Our code is available on GitHub.
TrueGL: A Truthful, Reliable, and Unified Engine for Grounded Learning in Full-Stack Search
In the age of open and free information, a concerning trend of reliance on AI is emerging. However, existing AI tools struggle to evaluate the credibility of information and to justify their assessments. Hence, there is a growing need for systems that can help users evaluate the trustworthiness of online information. Although major search engines incorporate AI features, they often lack clear reliability indicators. We present TrueGL, a model that makes trustworthy search results more accessible. The model is a fine-tuned version of IBM's Granite-1B, trained on the custom dataset and integrated into a search engine with a reliability scoring system. We evaluate the system using prompt engineering and assigning each statement a continuous reliability score from 0.1 to 1, then instructing the model to return a textual explanation alongside the score. Each model's predicted scores are measured against real scores using standard evaluation metrics. TrueGL consistently outperforms other small-scale LLMs and rule-based approaches across all experiments on key evaluation metrics, including MAE, RMSE, and R2. The model's high accuracy, broad content coverage, and ease of use make trustworthy information more accessible and help reduce the spread of false or misleading content online. Our code is publicly available at https://github.com/AlgazinovAleksandr/TrueGL, and our model is publicly released at https://huggingface.co/JoydeepC/trueGL.
SWE-bench: Can Language Models Resolve Real-World GitHub Issues?
Language models have outpaced our ability to evaluate them effectively, but for their future development it is essential to study the frontier of their capabilities. We consider real-world software engineering to be a rich, sustainable, and challenging testbed for evaluating the next generation of language models. We therefore introduce SWE-bench, an evaluation framework including 2,294 software engineering problems drawn from real GitHub issues and corresponding pull requests across 12 popular Python repositories. Given a codebase along with a description of an issue to be resolved, a language model is tasked with editing the codebase to address the issue. Resolving issues in SWE-bench frequently requires understanding and coordinating changes across multiple functions, classes, and even files simultaneously, calling for models to interact with execution environments, process extremely long contexts and perform complex reasoning that goes far beyond traditional code generation. Our evaluations show that both state-of-the-art proprietary models and our fine-tuned model SWE-Llama can resolve only the simplest issues. Claude 2 and GPT-4 solve a mere 4.8% and 1.7% of instances respectively, even when provided with an oracle retriever. Advances on SWE-bench represent steps towards LMs that are more practical, intelligent, and autonomous.
MEMTRACK: Evaluating Long-Term Memory and State Tracking in Multi-Platform Dynamic Agent Environments
Recent works on context and memory benchmarking have primarily focused on conversational instances but the need for evaluating memory in dynamic enterprise environments is crucial for its effective application. We introduce MEMTRACK, a benchmark designed to evaluate long-term memory and state tracking in multi-platform agent environments. MEMTRACK models realistic organizational workflows by integrating asynchronous events across multiple communication and productivity platforms such as Slack, Linear and Git. Each benchmark instance provides a chronologically platform-interleaved timeline, with noisy, conflicting, cross-referring information as well as potential codebase/file-system comprehension and exploration. Consequently, our benchmark tests memory capabilities such as acquistion, selection and conflict resolution. We curate the MEMTRACK dataset through both manual expert driven design and scalable agent based synthesis, generating ecologically valid scenarios grounded in real world software development processes. We introduce pertinent metrics for Correctness, Efficiency, and Redundancy that capture the effectiveness of memory mechanisms beyond simple QA performance. Experiments across SoTA LLMs and memory backends reveal challenges in utilizing memory across long horizons, handling cross-platform dependencies, and resolving contradictions. Notably, the best performing GPT-5 model only achieves a 60\% Correctness score on MEMTRACK. This work provides an extensible framework for advancing evaluation research for memory-augmented agents, beyond existing focus on conversational setups, and sets the stage for multi-agent, multi-platform memory benchmarking in complex organizational settings
SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions from recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a multi-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implement solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful Non-Reasoning LLMs and Reasoning LLMs as foundational models. The best-performing LLM using Sci-Reproducer achieves only 39% execution accuracy, highlighting the benchmark's difficulty.Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We will open-source our benchmark, and code at https://github.com/xyzCS/SciReplicate-Bench.
DRBench: A Realistic Benchmark for Enterprise Deep Research
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior benchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We?
Log data have facilitated various tasks of software development and maintenance, such as testing, debugging and diagnosing. Due to the unstructured nature of logs, log parsing is typically required to transform log messages into structured data for automated log analysis. Given the abundance of log parsers that employ various techniques, evaluating these tools to comprehend their characteristics and performance becomes imperative. Loghub serves as a commonly used dataset for benchmarking log parsers, but it suffers from limited scale and representativeness, posing significant challenges for studies to comprehensively evaluate existing log parsers or develop new methods. This limitation is particularly pronounced when assessing these log parsers for production use. To address these limitations, we provide a new collection of annotated log datasets, denoted Loghub-2.0, which can better reflect the characteristics of log data in real-world software systems. Loghub-2.0 comprises 14 datasets with an average of 3.6 million log lines in each dataset. Based on Loghub-2.0, we conduct a thorough re-evaluation of 15 state-of-the-art log parsers in a more rigorous and practical setting. Particularly, we introduce a new evaluation metric to mitigate the sensitivity of existing metrics to imbalanced data distributions. We are also the first to investigate the granular performance of log parsers on logs that represent rare system events, offering in-depth details for software diagnosis. Accurately parsing such logs is essential, yet it remains a challenge. We believe this work could shed light on the evaluation and design of log parsers in practical settings, thereby facilitating their deployment in production systems.
ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation
The generative capabilities of Large Language Models (LLMs) are rapidly expanding from static code to dynamic, interactive visual artifacts. This progress is bottlenecked by a critical evaluation gap: established benchmarks focus on algorithmic correctness and are blind to the visual fidelity and interactive integrity that define modern user experiences. To bridge this gap, we introduce ArtifactsBench, a new benchmark and paradigm for the automated, multimodal evaluation of visual code generation. Our framework programmatically renders each generated artifact and captures its dynamic behavior through temporal screenshots. This visual evidence, alongside the source code, is then assessed by a Multimodal LLM (MLLM)-as-Judge, which is rigorously guided by a fine-grained, per-task checklist to ensure holistic and reproducible scoring. We construct a new benchmark of 1,825 diverse tasks and evaluate over 30 leading LLMs. Our automated evaluation achieves a striking 94.4% ranking consistency with WebDev Arena, the gold-standard for human preference in web development, and over 90% pairwise agreement with human experts. This establishes ArtifactsBench as the first framework to reliably automate the assessment of human-perceived quality at scale. Our analysis provides a high-resolution map of the current SOTA, revealing that generalist models often outperform domain-specific ones. We open-source ArtifactsBench, including the benchmark, evaluation harness, and baseline results at https://artifactsbenchmark.github.io/, to provide the community with a scalable and accurate tool to accelerate the development of user-centric generative models.
MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at https://github.com/yuweihao/MM-Vet.
GradeSQL: Outcome Reward Models for Ranking SQL Queries from Large Language Models
Text-to-SQL, the task of translating natural language questions into SQL queries, has significantly advanced with the introduction of Large Language Models (LLMs), broadening database accessibility for a wide range of users. Despite substantial progress in generating valid SQL, current LLMs still struggle with complex queries that require precise alignment between user intent and the database schema. To mitigate this, test-time strategies such as Best-of-N (BoN) and Majority Voting (Maj) are often employed, based on the assumption that LLMs can generate correct answers but may require multiple attempts. However, these methods rely on surface-level heuristics, selecting either the syntactically correct query through execution-based BoN (ex-BoN) or the most frequently generated query with Maj. Recently, Outcome Reward Models (ORMs), which assign utility scores to generated outputs based on semantic correctness, have emerged as a promising approach for better aligning model predictions with user intent. Nevertheless, their application to Text-to-SQL remains largely underexplored. In this work, we evaluate ORMs as an effective heuristic for BoN, compare them with ex-BoN and Maj, and introduce a framework for training ORMs for the Text-to-SQL task. We evaluate our ORMs on the BIRD and SPIDER benchmarks, finetuning various open-source LLMs, including the Qwen2, Granite3, and Llama3 model families. Our results show that ORMs outperform ex-BoN and Maj, achieving execution accuracy gains of +4.33% (BIRD) and +2.10% (Spider) over ex-BoN, and +2.91% (BIRD) and +0.93% (Spider) over Maj. We further demonstrate that finetuning models already aligned with SQL generation, such as OmniSQL, yields superior ORM performance. Additionally, we observe that ORMs achieve competitive results on simple queries and benefit more from an increased number of candidates compared to ex-BoN and Maj.
Behavioral Fingerprinting of Large Language Models
Current benchmarks for Large Language Models (LLMs) primarily focus on performance metrics, often failing to capture the nuanced behavioral characteristics that differentiate them. This paper introduces a novel ``Behavioral Fingerprinting'' framework designed to move beyond traditional evaluation by creating a multi-faceted profile of a model's intrinsic cognitive and interactive styles. Using a curated Diagnostic Prompt Suite and an innovative, automated evaluation pipeline where a powerful LLM acts as an impartial judge, we analyze eighteen models across capability tiers. Our results reveal a critical divergence in the LLM landscape: while core capabilities like abstract and causal reasoning are converging among top models, alignment-related behaviors such as sycophancy and semantic robustness vary dramatically. We further document a cross-model default persona clustering (ISTJ/ESTJ) that likely reflects common alignment incentives. Taken together, this suggests that a model's interactive nature is not an emergent property of its scale or reasoning power, but a direct consequence of specific, and highly variable, developer alignment strategies. Our framework provides a reproducible and scalable methodology for uncovering these deep behavioral differences. Project: https://github.com/JarvisPei/Behavioral-Fingerprinting
Evaluation of RAG Metrics for Question Answering in the Telecom Domain
Retrieval Augmented Generation (RAG) is widely used to enable Large Language Models (LLMs) perform Question Answering (QA) tasks in various domains. However, RAG based on open-source LLM for specialized domains has challenges of evaluating generated responses. A popular framework in the literature is the RAG Assessment (RAGAS), a publicly available library which uses LLMs for evaluation. One disadvantage of RAGAS is the lack of details of derivation of numerical value of the evaluation metrics. One of the outcomes of this work is a modified version of this package for few metrics (faithfulness, context relevance, answer relevance, answer correctness, answer similarity and factual correctness) through which we provide the intermediate outputs of the prompts by using any LLMs. Next, we analyse the expert evaluations of the output of the modified RAGAS package and observe the challenges of using it in the telecom domain. We also study the effect of the metrics under correct vs. wrong retrieval and observe that few of the metrics have higher values for correct retrieval. We also study for differences in metrics between base embeddings and those domain adapted via pre-training and fine-tuning. Finally, we comment on the suitability and challenges of using these metrics for in-the-wild telecom QA task.
GODEL: Large-Scale Pre-Training for Goal-Directed Dialog
We introduce GODEL (Grounded Open Dialogue Language Model), a large pre-trained language model for dialog. In contrast with earlier models such as DialoGPT, GODEL leverages a new phase of grounded pre-training designed to better support adapting GODEL to a wide range of downstream dialog tasks that require information external to the current conversation (e.g., a database or document) to produce good responses. Experiments against an array of benchmarks that encompass task-oriented dialog, conversational QA, and grounded open-domain dialog show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups, in terms of both human and automatic evaluation. A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses (extrinsic evaluation) in addition to their communicative features (intrinsic evaluation). We show that extrinsic evaluation offers improved inter-annotator agreement and correlation with automated metrics. Code and data processing scripts are publicly available.
Style over Substance: Failure Modes of LLM Judges in Alignment Benchmarking
The release of ChatGPT in November 2022 sparked an explosion of interest in post-training and an avalanche of new preference optimization (PO) methods. These methods claim superior alignment by virtue of better correspondence with human pairwise preferences, often measured by LLM judges. In this work, we attempt to answer the following question -- do LLM-judge preferences translate to progress on other, more concrete metrics for alignment, and if not, why not? We define a concrete metric for alignment, and introduce SOS-Bench, the largest standardized, reproducible LLM meta-benchmark to date. We find that (1) LLM-judgments do not correlate with concrete measures of safety, world knowledge, and instruction following; (2) LLM judges have powerful implicit biases, prioritizing style over factuality and safety; and (3) the supervised fine-tuning (SFT) stage of post-training, and not the PO stage, has the greatest impact on alignment, with data scaling and prompt diversity as the driving factors. Our codebase and complete results can be found at https://github.com/penfever/sos-bench.
Teaching Code LLMs to Use Autocompletion Tools in Repository-Level Code Generation
Recent code large language models (LLMs) have shown promising performance in generating standalone functions but face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g., user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these dependencies. ToolGen comprises two main phases: Trigger Insertion and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding docstrings, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the autocompletion tool to suggest code completions and selects the most appropriate one. We conduct comprehensive experiments to evaluate ToolGen's effectiveness in repository-level code generation. To facilitate this evaluation, we create a benchmark comprising 680 real-world code repositories and introduce two new repository-level metrics: Dependency Coverage and Static Validity Rate. The results demonstrate that ToolGen significantly improves Dependency Coverage by 15.2% to 45.8% and Static Validity Rate by 10.9% to 42.2% across three distinct code LLMs, while maintaining competitive performance in widely-recognized similarity metrics. Furthermore, our generalizability evaluation confirms ToolGen's consistent performance when applied to diverse code LLMs, including various model architectures and scales.
A Closer Look into Automatic Evaluation Using Large Language Models
Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze LLM evaluation (Chiang and Lee, 2023) and G-Eval (Liu et al., 2023), and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets.
Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework
Large Language Models (LLMs) are being used more and more extensively for automated evaluation in various scenarios. Previous studies have attempted to fine-tune open-source LLMs to replicate the evaluation explanations and judgments of powerful proprietary models, such as GPT-4. However, these methods are largely limited to text-based analyses under predefined general criteria, resulting in reduced adaptability for unseen instructions and demonstrating instability in evaluating adherence to quantitative and structural constraints. To address these limitations, we propose a novel evaluation framework, ARJudge, that adaptively formulates evaluation criteria and synthesizes both text-based and code-driven analyses to evaluate LLM responses. ARJudge consists of two components: a fine-tuned Analyzer that generates multi-faceted evaluation analyses and a tuning-free Refiner that combines and refines all analyses to make the final judgment. We construct a Composite Analysis Corpus that integrates tasks for evaluation criteria generation alongside text-based and code-driven analysis generation to train the Analyzer. Our results demonstrate that ARJudge outperforms existing fine-tuned evaluators in effectiveness and robustness. Furthermore, it demonstrates the importance of multi-faceted evaluation and code-driven analyses in enhancing evaluation capabilities.
BEATS: Bias Evaluation and Assessment Test Suite for Large Language Models
In this research, we introduce BEATS, a novel framework for evaluating Bias, Ethics, Fairness, and Factuality in Large Language Models (LLMs). Building upon the BEATS framework, we present a bias benchmark for LLMs that measure performance across 29 distinct metrics. These metrics span a broad range of characteristics, including demographic, cognitive, and social biases, as well as measures of ethical reasoning, group fairness, and factuality related misinformation risk. These metrics enable a quantitative assessment of the extent to which LLM generated responses may perpetuate societal prejudices that reinforce or expand systemic inequities. To achieve a high score on this benchmark a LLM must show very equitable behavior in their responses, making it a rigorous standard for responsible AI evaluation. Empirical results based on data from our experiment show that, 37.65\% of outputs generated by industry leading models contained some form of bias, highlighting a substantial risk of using these models in critical decision making systems. BEATS framework and benchmark offer a scalable and statistically rigorous methodology to benchmark LLMs, diagnose factors driving biases, and develop mitigation strategies. With the BEATS framework, our goal is to help the development of more socially responsible and ethically aligned AI models.
STEPWISE-CODEX-Bench: Evaluating Complex Multi-Function Comprehension and Fine-Grained Execution Reasoning
In recent years, large language models (LLMs) have made significant progress in code intelligence, yet systematically evaluating their code understanding and reasoning abilities remains challenging. Mainstream benchmarks such as HumanEval and MBPP primarily assess functional correctness, while reasoning benchmarks like CRUXEVAL are limited to single-function, low-complexity scenarios. As a result, advanced models achieve nearly saturated scores, limiting their discriminative power. To address this, we present STEPWISE-CODEX-Bench (SX-Bench), a novel benchmark designed for complex multi-function understanding and fine-grained execution reasoning. SX-Bench features tasks involving collaboration among multiple sub-functions (e.g., chained calls, nested loops), shifting evaluation towards overall control and data flow modeling. It defines "computation steps" as the minimal execution unit and requires models to predict the total number of steps in reasoning tasks, thereby assessing a model's in-depth understanding of dynamic execution beyond simple I/O matching. Evaluation on over 20 mainstream models (including 14 reasoning-enhanced models) demonstrates that SX-Bench is highly discriminative: even the state-of-the-art OpenAI-O3 achieves only 78.37 percent accuracy on Hard-Reasoning tasks, much lower than its saturated scores on previous benchmarks, thereby revealing bottlenecks in complex and fine-grained reasoning. We also release an automated pipeline combining program synthesis, symbolic execution, and LLM-aided validation for efficient benchmark generation and quality assurance. SX-Bench advances code evaluation from "single-function verification" to "multi-function dynamic reasoning," providing a key tool for the in-depth assessment of advanced code intelligence models.
Measuring Language Model Hallucinations Through Distributional Correctness
Common evaluation paradigms for language models focus on scoring single responses through accuracy metrics or proper scoring rules, failing to capture the full richness of a model's belief state. Recent work illustrates that language models hallucinate in-part because they are optimised to be good test-takers under binary scoring schemes that reward any answer over abstention. While this insight naturally leads to penalty-based approaches, they ignore crucial distinctions in how models distribute uncertainty, for example between hedging toward incorrect answers versus hedging toward "I don't know" responses. A novel evaluation metric, the Distributional Correctness Score (DCS), is introduced to solve this problem, i.e., of not considering a model's entire probability distribution over answer choices. DCS naturally distinguishes between harmful overconfidence in wrong answers and uncertainty expressed through abstention, providing scores in an interpretable default range. Through theoretical analysis and illustrative examples, DCS is demonstrated to offer a more nuanced and aligned evaluation paradigm that incentivises models to express genuine uncertainty rather than guessing. Adapting 12 existing evaluation benchmarks to DCS's variants and measuring performance on six language models reveals that for half of the tested benchmarks scores are negative across all tested models, indicating significant tendencies towards hallucination.
Diverse And Private Synthetic Datasets Generation for RAG evaluation: A multi-agent framework
Retrieval-augmented generation (RAG) systems improve large language model outputs by incorporating external knowledge, enabling more informed and context-aware responses. However, the effectiveness and trustworthiness of these systems critically depends on how they are evaluated, particularly on whether the evaluation process captures real-world constraints like protecting sensitive information. While current evaluation efforts for RAG systems have primarily focused on the development of performance metrics, far less attention has been given to the design and quality of the underlying evaluation datasets, despite their pivotal role in enabling meaningful, reliable assessments. In this work, we introduce a novel multi-agent framework for generating synthetic QA datasets for RAG evaluation that prioritize semantic diversity and privacy preservation. Our approach involves: (1) a Diversity agent leveraging clustering techniques to maximize topical coverage and semantic variability, (2) a Privacy Agent that detects and mask sensitive information across multiple domains and (3) a QA curation agent that synthesizes private and diverse QA pairs suitable as ground truth for RAG evaluation. Extensive experiments demonstrate that our evaluation sets outperform baseline methods in diversity and achieve robust privacy masking on domain-specific datasets. This work offers a practical and ethically aligned pathway toward safer, more comprehensive RAG system evaluation, laying the foundation for future enhancements aligned with evolving AI regulations and compliance standards.
Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce
In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.
E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL
Translating Natural Language Queries into Structured Query Language (Text-to-SQL or NLQ-to-SQL) is a critical task extensively studied by both the natural language processing and database communities, aimed at providing a natural language interface to databases (NLIDB) and lowering the barrier for non-experts. Despite recent advancements made through the use of Large Language Models (LLMs), significant challenges remain. These include handling complex database schemas, resolving ambiguity in user queries, and generating SQL queries with intricate structures that accurately reflect the user's intent. In this work, we introduce E-SQL, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation. E-SQL enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question and SQL construction plan, bridging the gap between the query and the database structure. The pipeline leverages candidate predicate augmentation to mitigate erroneous or incomplete predicates in generated SQLs. Comprehensive evaluations on the BIRD benchmark illustrate that E-SQL achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set. A further observation from our experiments reveals that incorporating schema filtering into the translation pipeline does not have a positive impact on performance when the most advanced proprietary LLMs are used. Additionally, our experiments with small LLMs highlight the importance and positive impact of enriched questions on their performance. Without fine-tuning, single-prompt SQL generation using enriched questions with DeepSeek Coder 7B Instruct 1.5v achieves 56.45% execution accuracy on the BIRD development set.
Cascaded Information Disclosure for Generalized Evaluation of Problem Solving Capabilities
While question-answering~(QA) benchmark performance is an automatic and scalable method to compare LLMs, it is an indirect method of evaluating their underlying problem-solving capabilities. Therefore, we propose a holistic and generalizable framework based on cascaded question disclosure that provides a more accurate estimate of the models' problem-solving capabilities while maintaining the scalability and automation. This approach collects model responses in a stagewise manner with each stage revealing partial information about the question designed to elicit generalized reasoning in LLMs. We find that our approach not only provides a better comparison between LLMs, but also induces better intermediate traces in models compared to the standard QA paradigm. We empirically verify this behavior on diverse reasoning and knowledge-heavy QA datasets by comparing LLMs of varying sizes and families. Our approach narrows the performance gap observed in the standard QA evaluation settings, indicating that the prevalent indirect QA paradigm of evaluation overestimates the differences in performance between models. We further validate our findings by extensive ablation studies.
How Should I Build A Benchmark? Revisiting Code-Related Benchmarks For LLMs
Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency.
Prism: Dynamic and Flexible Benchmarking of LLMs Code Generation with Monte Carlo Tree Search
The rapid advancement of Large Language Models (LLMs) has outpaced traditional evaluation methods. Static benchmarks fail to capture the depth and breadth of LLM capabilities and eventually become obsolete, while most dynamic approaches either rely too heavily on LLM-based evaluation or remain constrained by predefined test sets. We introduce Prism, a flexible, dynamic benchmarking framework designed for comprehensive LLM assessment. Prism builds on three key components: (1) a tree-based state representation that models evaluation as a Markov Decision Process, (2) a Monte Carlo Tree Search algorithm adapted to uncover challenging evaluation scenarios, and (3) a multi-agent evaluation pipeline that enables simultaneous assessment of diverse capabilities. To ensure robust evaluation, Prism integrates structural measurements of tree exploration patterns with performance metrics across difficulty levels, providing detailed diagnostics of error patterns, test coverage, and solution approaches. Through extensive experiments on five state-of-the-art LLMs, we analyze how model architecture and scale influence code generation performance across varying task difficulties. Our results demonstrate Prism's effectiveness as a dynamic benchmark that evolves with model advancements while offering deeper insights into their limitations.
arXiVeri: Automatic table verification with GPT
Without accurate transcription of numerical data in scientific documents, a scientist cannot draw accurate conclusions. Unfortunately, the process of copying numerical data from one paper to another is prone to human error. In this paper, we propose to meet this challenge through the novel task of automatic table verification (AutoTV), in which the objective is to verify the accuracy of numerical data in tables by cross-referencing cited sources. To support this task, we propose a new benchmark, arXiVeri, which comprises tabular data drawn from open-access academic papers on arXiv. We introduce metrics to evaluate the performance of a table verifier in two key areas: (i) table matching, which aims to identify the source table in a cited document that corresponds to a target table, and (ii) cell matching, which aims to locate shared cells between a target and source table and identify their row and column indices accurately. By leveraging the flexible capabilities of modern large language models (LLMs), we propose simple baselines for table verification. Our findings highlight the complexity of this task, even for state-of-the-art LLMs like OpenAI's GPT-4. The code and benchmark will be made publicly available.
IFEvalCode: Controlled Code Generation
Code large language models (Code LLMs) have made significant progress in code generation by translating natural language descriptions into functional code; however, real-world applications often demand stricter adherence to detailed requirements such as coding style, line count, and structural constraints, beyond mere correctness. To address this, the paper introduces forward and backward constraints generation to improve the instruction-following capabilities of Code LLMs in controlled code generation, ensuring outputs align more closely with human-defined guidelines. The authors further present IFEvalCode, a multilingual benchmark comprising 1.6K test samples across seven programming languages (Python, Java, JavaScript, TypeScript, Shell, C++, and C#), with each sample featuring both Chinese and English queries. Unlike existing benchmarks, IFEvalCode decouples evaluation into two metrics: correctness (Corr.) and instruction-following (Instr.), enabling a more nuanced assessment. Experiments on over 40 LLMs reveal that closed-source models outperform open-source ones in controllable code generation and highlight a significant gap between the models' ability to generate correct code versus code that precisely follows instructions.
WebApp1K: A Practical Code-Generation Benchmark for Web App Development
We introduce WebApp1K, a practical code-generation benchmark to measure LLM ability to develop web apps. This benchmark aims to calibrate LLM output and aid the models to progressively improve code correctness and functionality. The benchmark is lightweight and easy to run. We present the initial version of WebApp1K, and share our findings of running the benchmark against the latest frontier LLMs. First, open source LLMs deliver impressive performance, closely trailing behind GPT-4o and Claude 3.5. Second, model size has strong correlation with code correctness. Third, no prompting techniques have been found to lift performance either universally to all models, or significantly to a single model.
TRUEBench: Can LLM Response Meet Real-world Constraints as Productivity Assistant?
Large language models (LLMs) are increasingly integral as productivity assistants, but existing benchmarks fall short in rigorously evaluating their real-world instruction-following capabilities. Current benchmarks often (i) lack sufficient multilinguality, (ii) fail to capture the implicit constraints inherent in user requests, and (iii) overlook the complexities of multi-turn dialogue. To address these critical gaps and provide a more realistic assessment, we introduce TRUEBench (Trustworthy Real-world Usage Evaluation Benchmark)1, a novel benchmark specifically designed for LLM-based productivity assistants. TRUEBench distinguishes itself by featuring input prompts across 12 languages, incorporating intra-instance multilingual instructions, employing rigorous evaluation criteria to capture both explicit and implicit constraints, and including complex multi-turn dialogue scenarios with both accumulating constraints and context switches. Furthermore, to ensure reliability in evaluation, we refined constraints using an LLM validator. Extensive experiments demonstrate that TRUEBench presents significantly greater challenges than existing benchmarks; for instance, a strong model like OpenAI o1 achieved only a 69.07% overall pass rate. TRUEBench offers a demanding and realistic assessment of LLMs in practical productivity settings, highlighting their capabilities and limitations.
Arctic-Text2SQL-R1: Simple Rewards, Strong Reasoning in Text-to-SQL
Translating natural language into SQL (Test2SQL) is a longstanding challenge at the intersection of natural language understanding and structured data access. While large language models (LLMs) have significantly improved fluency in SQL generation, producing correct and executable SQL--particularly for complex queries--remains a bottleneck. We present Arctic-Text2SQL-R1, a reinforcement learning (RL) framework and model family designed to generate accurate, executable SQL using a lightweight reward signal based solely on execution correctness. Our approach avoids brittle intermediate supervision and complex reward shaping, promoting stable training and alignment with the end task. Combined with carefully curated data, strong supervised initialization, and effective training practices, Arctic-Text2SQL-R1 achieves state-of-the-art execution accuracy across six diverse Test2SQL benchmarks, including the top position on the BIRD leaderboard. Notably, our 7B model outperforms prior 70B-class systems, highlighting the framework's scalability and efficiency. We further demonstrate inference-time robustness through simple extensions like value retrieval and majority voting. Extensive experiments and ablation studies offer both positive and negative insights, providing practical guidance for future Test2SQL research.
CodeS: Natural Language to Code Repository via Multi-Layer Sketch
The impressive performance of large language models (LLMs) on code-related tasks has shown the potential of fully automated software development. In light of this, we introduce a new software engineering task, namely Natural Language to code Repository (NL2Repo). This task aims to generate an entire code repository from its natural language requirements. To address this task, we propose a simple yet effective framework CodeS, which decomposes NL2Repo into multiple sub-tasks by a multi-layer sketch. Specifically, CodeS includes three modules: RepoSketcher, FileSketcher, and SketchFiller. RepoSketcher first generates a repository's directory structure for given requirements; FileSketcher then generates a file sketch for each file in the generated structure; SketchFiller finally fills in the details for each function in the generated file sketch. To rigorously assess CodeS on the NL2Repo task, we carry out evaluations through both automated benchmarking and manual feedback analysis. For benchmark-based evaluation, we craft a repository-oriented benchmark, SketchEval, and design an evaluation metric, SketchBLEU. For feedback-based evaluation, we develop a VSCode plugin for CodeS and engage 30 participants in conducting empirical studies. Extensive experiments prove the effectiveness and practicality of CodeS on the NL2Repo task.
OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models
Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.
OJBench: A Competition Level Code Benchmark For Large Language Models
Recent advancements in large language models (LLMs) have demonstrated significant progress in math and code reasoning capabilities. However, existing code benchmark are limited in their ability to evaluate the full spectrum of these capabilities, particularly at the competitive level. To bridge this gap, we introduce OJBench, a novel and challenging benchmark designed to assess the competitive-level code reasoning abilities of LLMs. OJBench comprises 232 programming competition problems from NOI and ICPC, providing a more rigorous test of models' reasoning skills. We conducted a comprehensive evaluation using OJBench on 37 models, including both closed-source and open-source models, reasoning-oriented and non-reasoning-oriented models. Our results indicate that even state-of-the-art reasoning-oriented models, such as o4-mini and Gemini-2.5-pro-exp, struggle with highly challenging competition-level problems. This highlights the significant challenges that models face in competitive-level code reasoning.
Redefining Retrieval Evaluation in the Era of LLMs
Traditional Information Retrieval (IR) metrics, such as nDCG, MAP, and MRR, assume that human users sequentially examine documents with diminishing attention to lower ranks. This assumption breaks down in Retrieval Augmented Generation (RAG) systems, where search results are consumed by Large Language Models (LLMs), which, unlike humans, process all retrieved documents as a whole rather than sequentially. Additionally, traditional IR metrics do not account for related but irrelevant documents that actively degrade generation quality, rather than merely being ignored. Due to these two major misalignments, namely human vs. machine position discount and human relevance vs. machine utility, classical IR metrics do not accurately predict RAG performance. We introduce a utility-based annotation schema that quantifies both the positive contribution of relevant passages and the negative impact of distracting ones. Building on this foundation, we propose UDCG (Utility and Distraction-aware Cumulative Gain), a metric using an LLM-oriented positional discount to directly optimize the correlation with the end-to-end answer accuracy. Experiments on five datasets and six LLMs demonstrate that UDCG improves correlation by up to 36% compared to traditional metrics. Our work provides a critical step toward aligning IR evaluation with LLM consumers and enables more reliable assessment of RAG components
InFoBench: Evaluating Instruction Following Ability in Large Language Models
This paper introduces the Decomposed Requirements Following Ratio (DRFR), a new metric for evaluating Large Language Models' (LLMs) ability to follow instructions. Addressing a gap in current methodologies, DRFR breaks down complex instructions into simpler criteria, facilitating a detailed analysis of LLMs' compliance with various aspects of tasks. Alongside this metric, we present InFoBench, a benchmark comprising 500 diverse instructions and 2,250 decomposed questions across multiple constraint categories. Our experiments compare DRFR with traditional scoring methods and explore annotation sources, including human experts, crowd-sourced workers, and GPT-4. The findings demonstrate DRFR's higher reliability and the effectiveness of using GPT-4 as a cost-efficient annotator. The evaluation of several advanced LLMs using this framework reveals their strengths and areas needing improvement, particularly in complex instruction-following. This study contributes a novel metric and benchmark, offering insights for future LLM development and evaluation.
A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models
Code Executing Reasoning is becoming a new non-functional metric that assesses the ability of large language models (LLMs) in programming tasks. State-of-the-art frameworks (CodeMind or REval) and benchmarks (CruxEval) usually focus on LLM's prediction of a given code's input/output or intermediate variable states/values on limited programs. However, there is no tool for more in-depth analysis of the results. Without such a tool, the observations about LLM's code execution reasoning cannot be generalized to more datasets, preventing the research community and practitioners from devising the next generation of LLMs with better code execution reasoning abilities. This paper introduces ExeRScope, a series of tools and heuristics to analyze the result of code execution reasoning frameworks to understand better the impact of code properties in the studied benchmarks on the code execution reasoning. With such tooling, analysis can be generalized to code with similar properties without the urgent need to design more benchmarks, which is a cumbersome effort.
LoCoBench-Agent: An Interactive Benchmark for LLM Agents in Long-Context Software Engineering
As large language models (LLMs) evolve into sophisticated autonomous agents capable of complex software development tasks, evaluating their real-world capabilities becomes critical. While existing benchmarks like LoCoBench~qiu2025locobench assess long-context code understanding, they focus on single-turn evaluation and cannot capture the multi-turn interactive nature, tool usage patterns, and adaptive reasoning required by real-world coding agents. We introduce LoCoBench-Agent, a comprehensive evaluation framework specifically designed to assess LLM agents in realistic, long-context software engineering workflows. Our framework extends LoCoBench's 8,000 scenarios into interactive agent environments, enabling systematic evaluation of multi-turn conversations, tool usage efficiency, error recovery, and architectural consistency across extended development sessions. We also introduce an evaluation methodology with 9 metrics across comprehension and efficiency dimensions. Our framework provides agents with 8 specialized tools (file operations, search, code analysis) and evaluates them across context lengths ranging from 10K to 1M tokens, enabling precise assessment of long-context performance. Through systematic evaluation of state-of-the-art models, we reveal several key findings: (1) agents exhibit remarkable long-context robustness; (2) comprehension-efficiency trade-off exists with negative correlation, where thorough exploration increases comprehension but reduces efficiency; and (3) conversation efficiency varies dramatically across models, with strategic tool usage patterns differentiating high-performing agents. As the first long-context LLM agent benchmark for software engineering, LoCoBench-Agent establishes a rigorous foundation for measuring agent capabilities, identifying performance gaps, and advancing autonomous software development at scale.
ToolHop: A Query-Driven Benchmark for Evaluating Large Language Models in Multi-Hop Tool Use
Effective evaluation of multi-hop tool use is critical for analyzing the understanding, reasoning, and function-calling capabilities of large language models (LLMs). However, progress has been hindered by a lack of reliable evaluation datasets. To address this, we present ToolHop, a dataset comprising 995 user queries and 3,912 associated tools, specifically designed for rigorous evaluation of multi-hop tool use. ToolHop ensures diverse queries, meaningful interdependencies, locally executable tools, detailed feedback, and verifiable answers through a novel query-driven data construction approach that includes tool creation, document refinement, and code generation. We evaluate 14 LLMs across five model families (i.e., LLaMA3.1, Qwen2.5, Gemini1.5, Claude3.5, and GPT), uncovering significant challenges in handling multi-hop tool-use scenarios. The leading model, GPT-4o, achieves an accuracy of 49.04%, underscoring substantial room for improvement. Further analysis reveals variations in tool-use strategies for various families, offering actionable insights to guide the development of more effective approaches. Code and data can be found in https://huggingface.co/bytedance-research/ToolHop.
AixBench: A Code Generation Benchmark Dataset
We present a benchmark dataset for evaluating method-level code generation task. The benchmark contains a dataset of 175 samples for automated evaluation and a dataset of 161 samples for manual evaluation. We also present a new metric for automatically evaluating the correctness of the generated code, and a set of criteria to manually evaluating the overall quality of the generated code.
MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers
The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.
BeyondBench: Benchmark-Free Evaluation of Reasoning in Language Models
Evaluating language models fairly is becoming harder as static benchmarks available on the internet risk contamination by training data. This makes it unclear whether models are truly reasoning or just recalling answers. In this paper, we introduce BeyondBench, an evaluation framework that avoids this problem by using algorithmic problem generation. Unlike traditional benchmarks that risk contamination from internet-scale training data, BeyondBench creates mathematically grounded problems on the fly, ensuring each test remains fresh and uncontaminated. Our framework covers 44 algorithmic tasks with a total of 117 variations, grouped into three difficulty levels: the Easy Suite (29 tasks) for basic arithmetic and statistics, the Medium Suite (5 tasks, 49 variations) for sequence patterns and reasoning, and the Hard Suite (10 tasks, 68 variations) tackling NP-complete and constraint satisfaction problems. Each task generates problems from a combinatorial space larger than 10^15 unique instances, with solutions verified deterministically by mathematical proofs. We evaluated 101 language models, including 85 open-source and 16 closed-source models, spanning sizes from 0.5B to 141B parameters and multiple quantization schemes. Our results show consistent reasoning deficiencies across model families, with performance degrading sharply as problem complexity increases from polynomial to exponential. In our Hard Suite evaluations, models such as Gemini-2.5-pro, Llama-3.3-70B, and Qwen2.5-72B achieved average accuracies of 56.38%, 26.91%, and 33.60%, respectively. Moreover, we observe that performance drops drastically without tool usage, with GPT-5, GPT-5-mini, and GPT-5-nano showing a decline of 16.81%, 28.05%, and 47.59% accuracy on the hard suite. Our leaderboard is publicly available at https://ctrl-gaurav.github.io/BeyondBench/
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
Which Prompts Make The Difference? Data Prioritization For Efficient Human LLM Evaluation
Human evaluation is increasingly critical for assessing large language models, capturing linguistic nuances, and reflecting user preferences more accurately than traditional automated metrics. However, the resource-intensive nature of this type of annotation process poses significant challenges. The key question driving our work: "is it feasible to minimize human-in-the-loop feedback by prioritizing data instances which most effectively distinguish between models?" We evaluate several metric-based methods and find that these metrics enhance the efficiency of human evaluations by minimizing the number of required annotations, thus saving time and cost, while ensuring a robust performance evaluation. We show that our method is effective across widely used model families, reducing instances of indecisive (or "tie") outcomes by up to 54% compared to a random sample when focusing on the top-20 percentile of prioritized instances. This potential reduction in required human effort positions our approach as a valuable strategy in future large language model evaluations.
Investigating Advanced Reasoning of Large Language Models via Black-Box Interaction
Existing tasks fall short in evaluating reasoning ability of Large Language Models (LLMs) in an interactive, unknown environment. This deficiency leads to the isolated assessment of deductive, inductive, and abductive reasoning, neglecting the integrated reasoning process that is indispensable for humans discovery of real world. We introduce a novel evaluation paradigm, black-box interaction, to tackle this challenge. A black-box is defined by a hidden function that maps a specific set of inputs to outputs. LLMs are required to unravel the hidden function behind the black-box by interacting with it in given exploration turns, and reasoning over observed input-output pairs. Leveraging this idea, we build the Oracle benchmark which comprises 6 types of black-box task and 96 black-boxes. 19 modern LLMs are benchmarked. o3 ranks first in 5 of the 6 tasks, achieving over 70\% accuracy on most easy black-boxes. But it still struggles with some hard black-box tasks, where its average performance drops below 40\%. Further analysis indicates a universal difficulty among LLMs: They lack the high-level planning capability to develop efficient and adaptive exploration strategies for hypothesis refinement.
CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution
We present CRUXEval (Code Reasoning, Understanding, and eXecution Evaluation), a benchmark consisting of 800 Python functions (3-13 lines). Each function comes with an input-output pair, leading to two natural tasks: input prediction and output prediction. First, we propose a generic recipe for generating our execution benchmark which can be used to create future variation of the benchmark. Second, we evaluate twenty code models on our benchmark and discover that many recent high-scoring models on HumanEval do not show the same improvements on our benchmark. Third, we show that simple CoT and fine-tuning schemes can improve performance on our benchmark but remain far from solving it. The best setup, GPT-4 with chain of thought (CoT), achieves a pass@1 of 75% and 81% on input and output prediction, respectively. In contrast, Code Llama 34B achieves a pass@1 of 50% and 46% on input and output prediction, highlighting the gap between open and closed source models. As no model is close to acing CRUXEval, we provide examples of consistent GPT-4 failures on simple programs as a lens into its code reasoning capabilities and areas for improvement.
Assessing the Quality and Security of AI-Generated Code: A Quantitative Analysis
This study presents a quantitative evaluation of the code quality and security of five prominent Large Language Models (LLMs): Claude Sonnet 4, Claude 3.7 Sonnet, GPT-4o, Llama 3.2 90B, and OpenCoder 8B. While prior research has assessed the functional performance of LLM-generated code, this research tested LLM output from 4,442 Java coding assignments through comprehensive static analysis using SonarQube. The findings suggest that although LLMs can generate functional code, they also introduce a range of software defects, including bugs, security vulnerabilities, and code smells. These defects do not appear to be isolated; rather, they may represent shared weaknesses stemming from systemic limitations within current LLM code generation methods. In particular, critically severe issues, such as hard-coded passwords and path traversal vulnerabilities, were observed across multiple models. These results indicate that LLM-generated code requires verification in order to be considered production-ready. This study found no direct correlation between a model's functional performance (measured by Pass@1 rate of unit tests) and the overall quality and security of its generated code, measured by the number of SonarQube issues in benchmark solutions that passed the functional tests. This suggests that functional benchmark performance score is not a good indicator of overall code quality and security. The goal of this study is not to rank LLM performance but to highlight that all evaluated models appear to share certain weaknesses. Consequently, these findings support the view that static analysis can be a valuable instrument for detecting latent defects and an important safeguard for organizations that deploy AI in software development.
Tests as Prompt: A Test-Driven-Development Benchmark for LLM Code Generation
We introduce WebApp1K, a novel benchmark for evaluating large language models (LLMs) in test-driven development (TDD) tasks, where test cases serve as both prompt and verification for code generation. Unlike traditional approaches relying on natural language prompts, our benchmark emphasizes the ability of LLMs to interpret and implement functionality directly from test cases, reflecting real-world software development practices. Comprising 1000 diverse challenges across 20 application domains, the benchmark evaluates LLMs on their ability to generate compact, functional code under the constraints of context length and multi-feature complexity. Our findings highlight instruction following and in-context learning as critical capabilities for TDD success, surpassing the importance of general coding proficiency or pretraining knowledge. Through comprehensive evaluation of 19 frontier models, we reveal performance bottlenecks, such as instruction loss in long prompts, and provide a detailed error analysis spanning multiple root causes. This work underscores the practical value of TDD-specific benchmarks and lays the foundation for advancing LLM capabilities in rigorous, application-driven coding scenarios.
ACEBench: Who Wins the Match Point in Tool Usage?
Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs' tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. "Normal" evaluates tool usage in basic scenarios; "Special" evaluates tool usage in situations with ambiguous or incomplete instructions; "Agent" evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.
MCP-RADAR: A Multi-Dimensional Benchmark for Evaluating Tool Use Capabilities in Large Language Models
As Large Language Models (LLMs) evolve from passive text generators to active reasoning agents capable of tool interaction, the Model Context Protocol (MCP) has emerged as a standardized framework for dynamic tool discovery and orchestration. Despite widespread industry adoption, existing evaluation methodologies fail to adequately assess tool utilization capabilities within this new paradigm. This paper introduces MCP-RADAR, the first comprehensive benchmark specifically designed to evaluate LLM performance in the MCP framework through a novel five-dimensional approach measuring: answer accuracy, tool selection efficiency, computational resource efficiency, parameter construction accuracy, and execution speed. Unlike conventional benchmarks that rely on subjective human evaluations or binary success metrics, MCP-RADAR employs objective, quantifiable measurements across multiple task domains including software engineering, mathematical reasoning, and general problem-solving. Our evaluations of leading commercial and open-source LLMs reveal distinctive capability profiles with significant trade-offs between accuracy, efficiency, and speed, challenging traditional single-metric performance rankings. Besides, we provide valuable guidance for developers to optimize their tools for maximum model compatibility and effectiveness. While focused on MCP due to its standardized approach, our methodology remains applicable across all LLM agent tool integration frameworks, providing valuable insights for both LLM developers and tool creators to optimize the entire LLM-tool interaction ecosystem. The implementation, configurations, and datasets used in our evaluation are publicly available at https://anonymous.4open.science/r/MCPRadar-B143.
Reasoning Runtime Behavior of a Program with LLM: How Far Are We?
Large language models for code (i.e., code LLMs) have shown strong code understanding and generation capabilities. To evaluate the capabilities of code LLMs in various aspects, many benchmarks have been proposed (e.g., HumanEval and ClassEval). Code reasoning is one of the most essential abilities of code LLMs, but existing benchmarks for code reasoning are not sufficient. Typically, they focus on predicting the input and output of a program, ignoring the evaluation of the intermediate behavior during program execution, as well as the logical consistency (e.g., the model should not give the correct output if the prediction of execution path is wrong) when performing the reasoning. To address these problems, in this paper, we propose a framework, namely REval, for evaluating code reasoning abilities and consistency of code LLMs with program execution. We utilize existing code benchmarks and adapt them to new benchmarks within our framework. A large-scale empirical study is conducted and most LLMs show unsatisfactory performance on both Runtime Behavior Reasoning (i.e., an average accuracy of 44.4%) and Incremental Consistency Evaluation (i.e., an average IC score of 10.3). Evaluation results of current code LLMs reflect the urgent need for the community to strengthen the code reasoning capability of code LLMs. Our code, data, and \newname leaderboard are available at https://r-eval.github.io.
The Inside Story: Towards Better Understanding of Machine Translation Neural Evaluation Metrics
Neural metrics for machine translation evaluation, such as COMET, exhibit significant improvements in their correlation with human judgments, as compared to traditional metrics based on lexical overlap, such as BLEU. Yet, neural metrics are, to a great extent, "black boxes" returning a single sentence-level score without transparency about the decision-making process. In this work, we develop and compare several neural explainability methods and demonstrate their effectiveness for interpreting state-of-the-art fine-tuned neural metrics. Our study reveals that these metrics leverage token-level information that can be directly attributed to translation errors, as assessed through comparison of token-level neural saliency maps with Multidimensional Quality Metrics (MQM) annotations and with synthetically-generated critical translation errors. To ease future research, we release our code at: https://github.com/Unbabel/COMET/tree/explainable-metrics.
Are Your LLMs Capable of Stable Reasoning?
The rapid advancement of Large Language Models (LLMs) has demonstrated remarkable progress in complex reasoning tasks. However, a significant discrepancy persists between benchmark performances and real-world applications. We identify this gap as primarily stemming from current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, particularly in complex reasoning tasks where both accuracy and consistency are crucial. This work makes two key contributions. First, we introduce G-Pass@k, a novel evaluation metric that provides a continuous assessment of model performance across multiple sampling attempts, quantifying both the model's peak performance potential and its stability. Second, we present LiveMathBench, a dynamic benchmark comprising challenging, contemporary mathematical problems designed to minimize data leakage risks during evaluation. Through extensive experiments using G-Pass@k on state-of-the-art LLMs with LiveMathBench, we provide comprehensive insights into both their maximum capabilities and operational consistency. Our findings reveal substantial room for improvement in LLMs' "realistic" reasoning capabilities, highlighting the need for more robust evaluation methods. The benchmark and detailed results are available at: https://github.com/open-compass/GPassK.
GREEN: Generative Radiology Report Evaluation and Error Notation
Evaluating radiology reports is a challenging problem as factual correctness is extremely important due to the need for accurate medical communication about medical images. Existing automatic evaluation metrics either suffer from failing to consider factual correctness (e.g., BLEU and ROUGE) or are limited in their interpretability (e.g., F1CheXpert and F1RadGraph). In this paper, we introduce GREEN (Generative Radiology Report Evaluation and Error Notation), a radiology report generation metric that leverages the natural language understanding of language models to identify and explain clinically significant errors in candidate reports, both quantitatively and qualitatively. Compared to current metrics, GREEN offers: 1) a score aligned with expert preferences, 2) human interpretable explanations of clinically significant errors, enabling feedback loops with end-users, and 3) a lightweight open-source method that reaches the performance of commercial counterparts. We validate our GREEN metric by comparing it to GPT-4, as well as to error counts of 6 experts and preferences of 2 experts. Our method demonstrates not only higher correlation with expert error counts, but simultaneously higher alignment with expert preferences when compared to previous approaches."
LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.
RPGBENCH: Evaluating Large Language Models as Role-Playing Game Engines
We present RPGBench, the first benchmark designed to evaluate large language models (LLMs) as text-based role-playing game (RPG) engines. RPGBench comprises two core tasks: Game Creation (GC) and Game Simulation (GS). In GC, an LLM must craft a valid and playable RPG world using a structured event-state representation, ensuring logical coherence and proper termination conditions. In GS, the LLM simulates interactive gameplay across multiple rounds while consistently updating states and enforcing game rules. To comprehensively assess performance, RPGBench integrates objective and subjective evaluation methodologies. Objective measures verify adherence to event mechanics and check variable updates without requiring human intervention. Subjective measures, such as content interestingness, action quality, and role-playing capability, are evaluated via an LLM-as-a-judge framework, where a strong LLM grades each candidate's outputs. Empirical results demonstrate that state-of-the-art LLMs can produce engaging stories but often struggle to implement consistent, verifiable game mechanics, particularly in long or complex scenarios. By combining structured, rule-based assessments with LLM-based judgments, RPGBench provides a new standard for evaluating how well LLMs can balance creativity, coherence, and complexity in text-based RPGs, opening avenues for more immersive and controllable interactive storytelling.
NExT: Teaching Large Language Models to Reason about Code Execution
A fundamental skill among human developers is the ability to understand and reason about program execution. As an example, a programmer can mentally simulate code execution in natural language to debug and repair code (aka. rubber duck debugging). However, large language models (LLMs) of code are typically trained on the surface textual form of programs, thus may lack a semantic understanding of how programs execute at run-time. To address this issue, we propose NExT, a method to teach LLMs to inspect the execution traces of programs (variable states of executed lines) and reason about their run-time behavior through chain-of-thought (CoT) rationales. Specifically, NExT uses self-training to bootstrap a synthetic training set of execution-aware rationales that lead to correct task solutions (e.g., fixed programs) without laborious manual annotation. Experiments on program repair tasks based on MBPP and HumanEval demonstrate that NExT improves the fix rate of a PaLM 2 model, by 26.1% and 14.3% absolute, respectively, with significantly improved rationale quality as verified by automated metrics and human raters. Our model can also generalize to scenarios where program traces are absent at test-time.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
RocketEval: Efficient Automated LLM Evaluation via Grading Checklist
Evaluating large language models (LLMs) in diverse and challenging scenarios is essential to align them with human preferences. To mitigate the prohibitive costs associated with human evaluations, utilizing a powerful LLM as a judge has emerged as a favored approach. Nevertheless, this methodology encounters several challenges, including substantial expenses, concerns regarding privacy and security, and reproducibility. In this paper, we propose a straightforward, replicable, and accurate automated evaluation method by leveraging a lightweight LLM as the judge, named RocketEval. Initially, we identify that the performance disparity between lightweight and powerful LLMs in evaluation tasks primarily stems from their ability to conduct comprehensive analyses, which is not easily enhanced through techniques such as chain-of-thought reasoning. By reframing the evaluation task as a multi-faceted Q&A using an instance-specific checklist, we demonstrate that the limited judgment accuracy of lightweight LLMs is largely attributes to high uncertainty and positional bias. To address these challenges, we introduce an automated evaluation process grounded in checklist grading, which is designed to accommodate a variety of scenarios and questions. This process encompasses the creation of checklists, the grading of these checklists by lightweight LLMs, and the reweighting of checklist items to align with the supervised annotations. Our experiments carried out on the automated evaluation benchmarks, MT-Bench and WildBench datasets, reveal that RocketEval, when using Gemma-2-2B as the judge, achieves a high correlation (0.965) with human preferences, which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code is available at https://github.com/Joinn99/RocketEval-ICLR .
An Empirical Study of LLM-as-a-Judge: How Design Choices Impact Evaluation Reliability
As large language models (LLMs) continue to advance, reliable evaluation methods are essential particularly for open-ended, instruction-following tasks. LLM-as-a-Judge enables automatic evaluation using LLMs as evaluators, but its reliability remains uncertain. In this work, we analyze key factors affecting its trustworthiness, focusing on alignment with human judgments and evaluation consistency. Using BIGGENBench and EvalBiasBench, we study the effects of evaluation design, decoding strategies, and Chain-of-Tought (CoT) reasoning in evaluation. Our results show that evaluation criteria are critical for reliability, non-deterministic sampling improves alignment with human preferences over deterministic evaluation, and CoT reasoning offers minimal gains when clear evaluation criteria are present.
Benchmarking and Studying the LLM-based Code Review
Automated Code Review (ACR) is crucial for software quality, yet existing benchmarks often fail to reflect real-world complexities, hindering the evaluation of modern Large Language Models (LLMs). Current benchmarks frequently focus on fine-grained code units, lack complete project context, and use inadequate evaluation metrics. To address these limitations, we introduce SWRBench , a new benchmark comprising 1000 manually verified Pull Requests (PRs) from GitHub, offering PR-centric review with full project context. SWRBench employs an objective LLM-based evaluation method that aligns strongly with human judgment (~90 agreement) by verifying if issues from a structured ground truth are covered in generated reviews. Our systematic evaluation of mainstream ACR tools and LLMs on SWRBench reveals that current systems underperform, and ACR tools are more adept at detecting functional errors. Subsequently, we propose and validate a simple multi-review aggregation strategy that significantly boosts ACR performance, increasing F1 scores by up to 43.67%. Our contributions include the SWRBench benchmark, its objective evaluation method, a comprehensive study of current ACR capabilities, and an effective enhancement approach, offering valuable insights for advancing ACR research.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.
Are LLMs ready to help non-expert users to make charts of official statistics data?
In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.
Benchmarking Foundation Models with Language-Model-as-an-Examiner
Numerous benchmarks have been established to assess the performance of foundation models on open-ended question answering, which serves as a comprehensive test of a model's ability to understand and generate language in a manner similar to humans. Most of these works focus on proposing new datasets, however, we see two main issues within previous benchmarking pipelines, namely testing leakage and evaluation automation. In this paper, we propose a novel benchmarking framework, Language-Model-as-an-Examiner, where the LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner. Our framework allows for effortless extensibility as various LMs can be adopted as the examiner, and the questions can be constantly updated given more diverse trigger topics. For a more comprehensive and equitable evaluation, we devise three strategies: (1) We instruct the LM examiner to generate questions across a multitude of domains to probe for a broad acquisition, and raise follow-up questions to engage in a more in-depth assessment. (2) Upon evaluation, the examiner combines both scoring and ranking measurements, providing a reliable result as it aligns closely with human annotations. (3) We additionally propose a decentralized Peer-examination method to address the biases in a single examiner. Our data and benchmarking results are available at: https://lmexam.com.
Putnam-AXIOM: A Functional and Static Benchmark
Current mathematical reasoning benchmarks for large language models (LLMs) are approaching saturation, with some achieving > 90% accuracy, and are increasingly compromised by training-set contamination. We introduce Putnam-AXIOM, a benchmark of 522 university-level competition problems drawn from the prestigious William Lowell Putnam Mathematical Competition, and Putnam-AXIOM Variation, an unseen companion set of 100 functional variants generated by programmatically perturbing variables and constants. The variation protocol produces an unlimited stream of equally difficult, unseen instances -- yielding a contamination-resilient test bed. On the Original set, OpenAI's o1-preview -- the strongest evaluated model -- scores 41.9%, but its accuracy drops by 19.6% (46.8% relative decrease) on the paired Variations. The remaining eighteen models show the same downward trend, ten of them with non-overlapping 95% confidence intervals. These gaps suggest memorization and highlight the necessity of dynamic benchmarks. We complement "boxed" accuracy with Teacher-Forced Accuracy (TFA), a lightweight metric that directly scores reasoning traces and automates natural language proof evaluations. Putnam-AXIOM therefore provides a rigorous, contamination-resilient evaluation framework for assessing advanced mathematical reasoning of LLMs. Data and evaluation code are publicly available at https://github.com/brando90/putnam-axiom.
SWE-fficiency: Can Language Models Optimize Real-World Repositories on Real Workloads?
Optimizing the performance of large-scale software repositories demands expertise in code reasoning and software engineering (SWE) to reduce runtime while preserving program correctness. However, most benchmarks emphasize what to fix rather than how to fix code. We introduce SWE-fficiency, a benchmark for evaluating repository-level performance optimization on real workloads. Our suite contains 498 tasks across nine widely used data-science, machine-learning, and HPC repositories (e.g., numpy, pandas, scipy): given a complete codebase and a slow workload, an agent must investigate code semantics, localize bottlenecks and relevant tests, and produce a patch that matches or exceeds expert speedup while passing the same unit tests. To enable this how-to-fix evaluation, our automated pipeline scrapes GitHub pull requests for performance-improving edits, combining keyword filtering, static analysis, coverage tooling, and execution validation to both confirm expert speedup baselines and identify relevant repository unit tests. Empirical evaluation of state-of-the-art agents reveals significant underperformance. On average, agents achieve less than 0.15x the expert speedup: agents struggle in localizing optimization opportunities, reasoning about execution across functions, and maintaining correctness in proposed edits. We release the benchmark and accompanying data pipeline to facilitate research on automated performance engineering and long-horizon software reasoning.
ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench
Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs
The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
ConSens: Assessing context grounding in open-book question answering
Large Language Models (LLMs) have demonstrated considerable success in open-book question answering (QA), where the task requires generating answers grounded in a provided external context. A critical challenge in open-book QA is to ensure that model responses are based on the provided context rather than its parametric knowledge, which can be outdated, incomplete, or incorrect. Existing evaluation methods, primarily based on the LLM-as-a-judge approach, face significant limitations, including biases, scalability issues, and dependence on costly external systems. To address these challenges, we propose a novel metric that contrasts the perplexity of the model response under two conditions: when the context is provided and when it is not. The resulting score quantifies the extent to which the model's answer relies on the provided context. The validity of this metric is demonstrated through a series of experiments that show its effectiveness in identifying whether a given answer is grounded in the provided context. Unlike existing approaches, this metric is computationally efficient, interpretable, and adaptable to various use cases, offering a scalable and practical solution to assess context utilization in open-book QA systems.
TESTEVAL: Benchmarking Large Language Models for Test Case Generation
Testing plays a crucial role in the software development cycle, enabling the detection of bugs, vulnerabilities, and other undesirable behaviors. To perform software testing, testers need to write code snippets that execute the program under test. Recently, researchers have recognized the potential of large language models (LLMs) in software testing. However, there remains a lack of fair comparisons between different LLMs in terms of test case generation capabilities. In this paper, we propose TESTEVAL, a novel benchmark for test case generation with LLMs. We collect 210 Python programs from an online programming platform, LeetCode, and design three different tasks: overall coverage, targeted line/branch coverage, and targeted path coverage. We further evaluate sixteen popular LLMs, including both commercial and open-source ones, on TESTEVAL. We find that generating test cases to cover specific program lines/branches/paths is still challenging for current LLMs, indicating a lack of ability to comprehend program logic and execution paths. We have open-sourced our dataset and benchmark pipelines at https://llm4softwaretesting.github.io to contribute and accelerate future research on LLMs for software testing.
ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation
This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.
Lean Finder: Semantic Search for Mathlib That Understands User Intents
We present Lean Finder, a semantic search engine for Lean and mathlib that understands and aligns with the intents of mathematicians. Progress in formal theorem proving is often hindered by the difficulty of locating relevant theorems and the steep learning curve of the Lean 4 language, making advancement slow and labor-intensive. Existing Lean search engines, though helpful, rely primarily on informalizations (natural language translation of the formal statements), while largely overlooking the mismatch with real-world user queries. In contrast, we propose a user-centered semantic search tailored to the needs of mathematicians. Our approach begins by analyzing and clustering the semantics of public Lean discussions, then fine-tuning text embeddings on synthesized queries that emulate user intents. We further align Lean Finder with mathematicians' preferences using diverse feedback signals, encoding it with a rich awareness of their goals from multiple perspectives. Evaluations on real-world queries, informalized statements, and proof states demonstrate that our Lean Finder achieves over 30% relative improvement compared to previous search engines and GPT-4o. In addition, Lean Finder is compatible with LLM-based theorem provers, bridging retrieval with formal reasoning. Lean Finder is available at: https://leanfinder.github.io
StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?
Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.
USR: An Unsupervised and Reference Free Evaluation Metric for Dialog Generation
The lack of meaningful automatic evaluation metrics for dialog has impeded open-domain dialog research. Standard language generation metrics have been shown to be ineffective for evaluating dialog models. To this end, this paper presents USR, an UnSupervised and Reference-free evaluation metric for dialog. USR is a reference-free metric that trains unsupervised models to measure several desirable qualities of dialog. USR is shown to strongly correlate with human judgment on both Topical-Chat (turn-level: 0.42, system-level: 1.0) and PersonaChat (turn-level: 0.48 and system-level: 1.0). USR additionally produces interpretable measures for several desirable properties of dialog.
RLocator: Reinforcement Learning for Bug Localization
Software developers spend a significant portion of time fixing bugs in their projects. To streamline this process, bug localization approaches have been proposed to identify the source code files that are likely responsible for a particular bug. Prior work proposed several similarity-based machine-learning techniques for bug localization. Despite significant advances in these techniques, they do not directly optimize the evaluation measures. We argue that directly optimizing evaluation measures can positively contribute to the performance of bug localization approaches. Therefore, In this paper, we utilize Reinforcement Learning (RL) techniques to directly optimize the ranking metrics. We propose RLocator, a Reinforcement Learning-based bug localization approach. We formulate RLocator using a Markov Decision Process (MDP) to optimize the evaluation measures directly. We present the technique and experimentally evaluate it based on a benchmark dataset of 8,316 bug reports from six highly popular Apache projects. The results of our evaluation reveal that RLocator achieves a Mean Reciprocal Rank (MRR) of 0.62, a Mean Average Precision (MAP) of 0.59, and a Top 1 score of 0.46. We compare RLocator with two state-of-the-art bug localization tools, FLIM and BugLocator. Our evaluation reveals that RLocator outperforms both approaches by a substantial margin, with improvements of 38.3% in MAP, 36.73% in MRR, and 23.68% in the Top K metric. These findings highlight that directly optimizing evaluation measures considerably contributes to performance improvement of the bug localization problem.
