|
--- |
|
language: ko |
|
license: mit |
|
library_name: transformers |
|
pipeline_tag: text2text-generation |
|
--- |
|
|
|
# FLAN T5 |
|
[Source Code](https://github.com/paust-team/pko-t5/tree/main/pkot5/flan) |
|
|
|
FLAN T5λ [paust/pko-t5-large](https://huggingface.co/paust/pko-t5-large) λͺ¨λΈμ κΈ°λ°μΌλ‘ λ€μν νμ€ν¬λ₯Ό instruction finetuningμ ν΅ν΄μ λ§λ λͺ¨λΈμ
λλ€. |
|
|
|
νμ¬ κ³μ Instruction Finetuning μ μ§ννλ©΄μ μ€κ°κ²°κ³Όλ₯Ό λͺ¨λΈλ‘ μ
λ°μ΄νΈνκ³ μμ΅λλ€. |
|
|
|
|
|
## νμ΅λ νμ€ν¬ |
|
| Task name | Task type | |
|
|----------------------------|----------------| |
|
| NSMC | Classification | |
|
| Klue Ynat | Classification | |
|
| KorNLI | Classification | |
|
| KorSTS | Classification | |
|
| QuestionPair | Classification | |
|
| Klue STS | Classification | |
|
| AIHub news Summary | Summarization | |
|
| AIHub document Summary | Summarization | |
|
| AIHub book Summary | Summarization | |
|
| AIHub conversation Summary | Summarization | |
|
| AIHub ko-to-en | Translation | |
|
| AIHub ko-to-en Expert | Translation | |
|
| AIHub ko-to-en Tech | Translation | |
|
| AIHub ko-to-en social | Translation | |
|
| AIHub ko-to-jp | Translation | |
|
| AIHub ko-to-cn Tech | Translation | |
|
| AIHub Translation Corpus | Translation | |
|
| korquad | QA | |
|
| Klue MRC | QA | |
|
| AIHub mindslab's MRC | QA | |
|
|
|
|
|
## λͺ¨λΈ |
|
- [Hugginface λ§ν¬](https://huggingface.co/paust/pko-flan-t5-large) |
|
|
|
|
|
## μ¬μ© μμ |
|
```python |
|
from transformers import T5ForConditionalGeneration, T5TokenizerFast |
|
|
|
tokenizer = T5TokenizerFast.from_pretrained('paust/pko-flan-t5-large') |
|
model = T5ForConditionalGeneration.from_pretrained('paust/pko-flan-t5-large', device_map='cuda') |
|
|
|
prompt = """μμΈνΉλ³μ(μμΈηΉε₯εΈ, μμ΄: Seoul Metropolitan Government)λ λνλ―Όκ΅ μλμ΄μ μ΅λ λμμ΄λ€. μ μ¬μλλΆν° μ¬λμ΄ κ±°μ£ΌνμμΌλ λ³Έ μμ¬λ λ°±μ 첫 μλ μλ‘μ±μ μμ΄λ‘ νλ€. μΌκ΅μλμλ μ λ΅μ μμΆ©μ§λ‘μ κ³ κ΅¬λ €, λ°±μ , μ λΌκ° λ²κ°μ μ°¨μ§νμμΌλ©°, κ³ λ € μλμλ μμ€μ λ³κΆμ΄ μΈμμ§ λ¨κ²½(εδΊ¬)μΌλ‘ μ΄λ¦νμλ€. |
|
νκ΅μ μλλ μ΄λμ
λκΉ?""" |
|
input_ids = tokenizer(prompt, add_special_tokens=True, return_tensors='pt').input_ids |
|
output_ids = model.generate(input_ids=input_ids.cuda(), max_new_tokens=32, num_beams=12) |
|
text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
print(text) # μμΈνΉλ³μ |
|
``` |
|
|
|
## License |
|
[PAUST](https://paust.io)μμ λ§λ pko-t5λ [MIT license](https://github.com/paust-team/pko-t5/blob/main/LICENSE) νμ 곡κ°λμ΄ μμ΅λλ€. |