blurred_landmarks / README.md
petrznel's picture
update model card README.md
0085ed2
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: blurred_landmarks
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: landmarks
          split: validation
          args: landmarks
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9645365168539326

blurred_landmarks

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1152
  • Accuracy: 0.9645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6588 1.0 357 0.6460 0.7707
0.3752 2.0 714 0.2969 0.8933
0.3275 3.0 1071 0.1912 0.9319
0.2183 4.0 1429 0.1794 0.9305
0.2133 5.0 1786 0.1638 0.9414
0.1984 6.0 2143 0.1322 0.9484
0.1409 7.0 2500 0.1304 0.9529
0.1864 8.0 2858 0.1212 0.9572
0.1778 9.0 3215 0.1216 0.9540
0.1734 10.0 3572 0.1129 0.9593
0.1349 11.0 3929 0.1127 0.9614
0.1057 12.0 4287 0.1177 0.9582
0.1434 13.0 4644 0.1153 0.9603
0.0832 14.0 5001 0.1264 0.9593
0.0963 15.0 5358 0.1146 0.9607
0.0642 16.0 5716 0.1135 0.9635
0.0763 17.0 6073 0.1210 0.9614
0.0432 18.0 6430 0.1162 0.9645
0.0618 19.0 6787 0.1269 0.9600
0.049 19.99 7140 0.1152 0.9645

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.10.1
  • Tokenizers 0.11.0