PLaMo Translation Model
PLaMo翻訳モデルはPreferred Networksによって開発された翻訳向け特化型大規模言語モデルです。 詳しくはブログ記事およびプレスリリースを参照してください。
PLaMo Translation Model is a specialized large-scale language model developed by Preferred Networks for translation tasks. For details, please refer to the blog post and press release.
List of models:
- plamo-2-translate ... Post-trained model for translation
- plamo-2-translate-base ... Base model for translation
- plamo-2-translate-eval ... Pair-wise evaluation model
PLaMo Translation Model is released under PLaMo community license. Please check the following license and agree to this before downloading.
- (EN) under construction: we apologize for the inconvenience
- (JA) https://www.preferred.jp/ja/plamo-community-license/
NOTE: This model has NOT been instruction-tuned for chat dialog or other downstream tasks.
For commercial users
Please check the PLaMo community license and contact us via the following form to use commercial purpose.
Usage
main/base model
import vllm
# max_model_len/max_num_batched_tokens can be increased when running on a GPU with substantial memory.
# NOTE: Switch to "pfnet/plamo-2-translate-base" to try the base model.
llm = vllm.LLM(model="pfnet/plamo-2-translate", trust_remote_code=True, max_model_len=2000, max_num_batched_tokens=2000)
prompt = r'''<|plamo:op|>dataset
translation
<|plamo:op|>input lang=English
Write the text to be translated here.
<|plamo:op|>output lang=Japanese
'''
responses = llm.generate([prompt] * 1, sampling_params=vllm.SamplingParams(temperature=0, max_tokens=1024, stop=["<|plamo:op|>"]))
# NOTE: This outputs "ここに翻訳するテキストを入力してください。".
print(responses[0].outputs[0].text)
evaluation model
import vllm
# max_model_len/max_num_batched_tokens can be increased when running on a GPU with substantial memory.
llm = vllm.LLM(model="pfnet/plamo-2-translate-eval", trust_remote_code=True, max_model_len=2000, max_num_batched_tokens=2000)
prompt = r'''<|plamo:op|>dataset
translation evaluation
<|plamo:op|>input lang=English
This is an apple.
<|plamo:op|>output id=A lang=Japanese
これはりんごです。
<|plamo:op|>output id=B lang=Japanese
これはリンゴです。
<|plamo:op|>best
id='''
responses = llm.generate([prompt] * 1, sampling_params=vllm.SamplingParams(temperature=0, max_tokens=1, stop=["<|plamo:op|>"]))
# NOTE: This outputs "A".
print(responses[0].outputs[0].text)
Bias, Risks, and Limitations
PLaMo Translation Model is a new technology that carries risks with use. Testing conducted to date has been in English and Japanese, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, PLaMo Translation Model’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of PLaMo Translation Model, developers should perform safety testing and tuning tailored to their specific applications of the model.
Acknowledgement
This model is trained under the project, “Research and Development Project of the Enhanced Infrastructures for Post 5G Information and Communication System” (JPNP 20017), subsidized by the New Energy and Industrial Technology Development Organization (NEDO).
AI policies for Preferred Networks, Inc. group
- Downloads last month
- 4,983
Model tree for pfnet/plamo-2-translate
Base model
pfnet/plamo-2-8b