YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Vietnamese Summary Evaluator (videberta-base + trunk + 3 heads)

What is this? A multi-criteria evaluator that predicts three scores in [0,1]: faithfulness, coherence, relevance for a (document, summary) pair.

Architecture. Vietnamese encoder backbone → mean pooling → shared MLP trunk → three linear heads.

Training (short).

  • Multi-task regression (MSE) + in-document pairwise hinge ranking (doc_id grouping).
  • Tokenization: pair (doc, summary), truncation='only_first', pre-trim summary to 256, max_len=512.
  • See training_args.json, loss_config.json, and arch_config.json for details.

Files

  • config.json, model.safetensors (+ tokenizer files): backbone encoder
  • trunk.pt, head_faith.pt, head_coh.pt, head_rel.pt: lightweight heads
  • arch_config.json, training_args.json, loss_config.json, package_versions.json
  • modeling_summary_evaluator.py: loader & pair-encoding helpers

Quickstart

from huggingface_hub import snapshot_download
import importlib.util, os
repo = snapshot_download("summary-evaluator-export", repo_type="model")
spec = importlib.util.spec_from_file_location("mse", os.path.join(repo, "modeling_summary_evaluator.py"))
mse = importlib.util.module_from_spec(spec); spec.loader.exec_module(mse)
model, tok, device = mse.load_for_inference(repo)
enc = mse.encode_pair(tok, ["Văn bản gốc..."], ["Bản tóm tắt..."])
import torch
with torch.inference_mode():
    y = model(torch.tensor(enc["input_ids"]), torch.tensor(enc["attention_mask"]))
print(y)  # [1, 3] in [0,1]
  
Downloads last month
72
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support