YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Vietnamese Summary Evaluator (videberta-base + trunk + 3 heads)
What is this? A multi-criteria evaluator that predicts three scores in [0,1]: faithfulness, coherence, relevance for a (document, summary) pair.
Architecture. Vietnamese encoder backbone → mean pooling → shared MLP trunk → three linear heads.
Training (short).
- Multi-task regression (MSE) + in-document pairwise hinge ranking (doc_id grouping).
- Tokenization: pair (doc, summary), truncation='only_first', pre-trim summary to 256, max_len=512.
- See
training_args.json,loss_config.json, andarch_config.jsonfor details.
Files
config.json,model.safetensors(+ tokenizer files): backbone encodertrunk.pt,head_faith.pt,head_coh.pt,head_rel.pt: lightweight headsarch_config.json,training_args.json,loss_config.json,package_versions.jsonmodeling_summary_evaluator.py: loader & pair-encoding helpers
Quickstart
from huggingface_hub import snapshot_download
import importlib.util, os
repo = snapshot_download("summary-evaluator-export", repo_type="model")
spec = importlib.util.spec_from_file_location("mse", os.path.join(repo, "modeling_summary_evaluator.py"))
mse = importlib.util.module_from_spec(spec); spec.loader.exec_module(mse)
model, tok, device = mse.load_for_inference(repo)
enc = mse.encode_pair(tok, ["Văn bản gốc..."], ["Bản tóm tắt..."])
import torch
with torch.inference_mode():
y = model(torch.tensor(enc["input_ids"]), torch.tensor(enc["attention_mask"]))
print(y) # [1, 3] in [0,1]
- Downloads last month
- 72
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support