pk3388's picture
Model save
d41b14b verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-vit
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8157894736842105

vit-base-patch16-224-vit

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6404
  • Accuracy: 0.8158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8161 0.9787 23 1.4794 0.4368
0.9674 2.0 47 1.0353 0.6737
0.4804 2.9787 70 0.7857 0.7316
0.3301 4.0 94 0.6994 0.7632
0.1821 4.9787 117 0.8172 0.7632
0.161 6.0 141 0.6663 0.8
0.1161 6.9787 164 0.6439 0.8211
0.0855 8.0 188 0.5770 0.8368
0.0635 8.9787 211 0.6380 0.8316
0.0522 9.7872 230 0.6404 0.8158

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1