Nvidia-Llama-3.1-Nemotron-Nano-4B-v1.1-Summarization-QLoRA

This model is a fine-tuned version of nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1 on the scitldr dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.7819 0.1004 200 2.7248
2.6369 0.2008 400 2.7038
2.6191 0.3012 600 2.6867
2.5851 0.4016 800 2.6784
2.5811 0.5020 1000 2.6674
2.59 0.6024 1200 2.6563
2.5887 0.7028 1400 2.6476
2.55 0.8032 1600 2.6456
2.5912 0.9036 1800 2.6312
2.5467 1.0040 2000 2.6378
2.1808 1.1044 2200 2.6606
2.2174 1.2048 2400 2.6817
2.1764 1.3052 2600 2.6726
2.2018 1.4056 2800 2.6818
2.1532 1.5060 3000 2.6793
2.1691 1.6064 3200 2.6659
2.1174 1.7068 3400 2.6727
2.1496 1.8072 3600 2.6726
2.1834 1.9076 3800 2.6638

Framework versions

  • PEFT 0.16.0
  • Transformers 4.54.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
16
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pkbiswas/Nvidia-Llama-3.1-Nemotron-Nano-4B-v1.1-Summarization-QLoRA

Dataset used to train pkbiswas/Nvidia-Llama-3.1-Nemotron-Nano-4B-v1.1-Summarization-QLoRA