Nvidia-Llama-3.1-Nemotron-Nano-4B-v1.1-Summarization-QLoRA
This model is a fine-tuned version of nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1 on the scitldr dataset. It achieves the following results on the evaluation set:
- Loss: 2.6638
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7819 | 0.1004 | 200 | 2.7248 |
2.6369 | 0.2008 | 400 | 2.7038 |
2.6191 | 0.3012 | 600 | 2.6867 |
2.5851 | 0.4016 | 800 | 2.6784 |
2.5811 | 0.5020 | 1000 | 2.6674 |
2.59 | 0.6024 | 1200 | 2.6563 |
2.5887 | 0.7028 | 1400 | 2.6476 |
2.55 | 0.8032 | 1600 | 2.6456 |
2.5912 | 0.9036 | 1800 | 2.6312 |
2.5467 | 1.0040 | 2000 | 2.6378 |
2.1808 | 1.1044 | 2200 | 2.6606 |
2.2174 | 1.2048 | 2400 | 2.6817 |
2.1764 | 1.3052 | 2600 | 2.6726 |
2.2018 | 1.4056 | 2800 | 2.6818 |
2.1532 | 1.5060 | 3000 | 2.6793 |
2.1691 | 1.6064 | 3200 | 2.6659 |
2.1174 | 1.7068 | 3400 | 2.6727 |
2.1496 | 1.8072 | 3600 | 2.6726 |
2.1834 | 1.9076 | 3800 | 2.6638 |
Framework versions
- PEFT 0.16.0
- Transformers 4.54.0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 16
Model tree for pkbiswas/Nvidia-Llama-3.1-Nemotron-Nano-4B-v1.1-Summarization-QLoRA
Base model
nvidia/Llama-3.1-Minitron-4B-Width-Base
Finetuned
nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1