AdditiveLLM
Collection
32 items
•
Updated
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7058 | 1.0 | 1062 | 0.6084 | 0.7927 |
0.5439 | 2.0 | 2124 | 0.4581 | 0.8141 |
0.4417 | 3.0 | 3186 | 0.3951 | 0.8403 |
0.4504 | 4.0 | 4248 | 0.3578 | 0.8487 |
0.428 | 5.0 | 5310 | 0.3352 | 0.8584 |
0.4089 | 6.0 | 6372 | 0.3347 | 0.8638 |
0.3428 | 7.0 | 7434 | 0.3248 | 0.8681 |
0.4219 | 8.0 | 8496 | 0.3178 | 0.8715 |
0.3689 | 9.0 | 9558 | 0.3044 | 0.8736 |
0.3891 | 10.0 | 10620 | 0.3037 | 0.8724 |
0.3849 | 11.0 | 11682 | 0.3064 | 0.8713 |
0.3302 | 12.0 | 12744 | 0.3006 | 0.8758 |
0.3576 | 13.0 | 13806 | 0.3016 | 0.8742 |
0.3548 | 14.0 | 14868 | 0.2990 | 0.8766 |
0.3596 | 15.0 | 15930 | 0.2980 | 0.8765 |
Base model
distilbert/distilbert-base-uncased