wav2vec2-large-xlsr-300m-nepali
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m
The dataset used to train are :
- OpenSLR-54 Corpus
- External Data
For evaluation on publicly available datasets, can use OpenSLR-43 corpus - Model is not trained on this data which is also available on HuggingFace as train-set where it achieves 27% WER and 8.3% CER with 5 gram language model.
Script to Evaluate the Model on OpenSLR-43 train set :
python3 eval.py --model_id prajin/wav2vec2-large-xlsr-300m-nepali --dataset openslr --config SLR43 --split train --log_outputs
Below evaluation result is the evaluation on separated 10000 samples from total training dataset.
It achieves the following results on the evaluation set Without using Language Model :
- Loss: 0.2625
- Wer: 0.3426
With Language model ( 5 gram )
- Wer: 0.2502
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3468 | 0.04 | 400 | 0.2624 | 0.3479 |
0.2792 | 0.08 | 800 | 0.2696 | 0.3490 |
0.245 | 0.12 | 1200 | 0.2751 | 0.3502 |
0.2453 | 0.16 | 1600 | 0.2754 | 0.3523 |
0.2332 | 0.2 | 2000 | 0.2779 | 0.3517 |
0.2321 | 0.24 | 2400 | 0.2775 | 0.3528 |
0.2708 | 0.28 | 2800 | 0.2764 | 0.3533 |
0.2709 | 0.32 | 3200 | 0.2723 | 0.3544 |
0.2715 | 0.36 | 3600 | 0.2739 | 0.3545 |
0.2732 | 0.4 | 4000 | 0.2707 | 0.3498 |
0.2643 | 0.44 | 4400 | 0.2696 | 0.3499 |
0.2682 | 0.47 | 4800 | 0.2672 | 0.3492 |
0.2687 | 0.51 | 5200 | 0.2644 | 0.3474 |
0.269 | 0.55 | 5600 | 0.2619 | 0.3502 |
0.2675 | 0.59 | 6000 | 0.2606 | 0.3477 |
0.2656 | 0.63 | 6400 | 0.2597 | 0.3463 |
0.2667 | 0.67 | 6800 | 0.2607 | 0.3458 |
0.2639 | 0.71 | 7200 | 0.2601 | 0.3480 |
0.2631 | 0.75 | 7600 | 0.2582 | 0.3447 |
0.2589 | 0.79 | 8000 | 0.2577 | 0.3438 |
0.2554 | 0.83 | 8400 | 0.2557 | 0.3439 |
0.2687 | 0.87 | 8800 | 0.2546 | 0.3438 |
0.2574 | 0.91 | 9200 | 0.2537 | 0.3434 |
0.2623 | 0.95 | 9600 | 0.2530 | 0.3433 |
0.2675 | 0.99 | 10000 | 0.2530 | 0.3426 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support