metadata
library_name: transformers
license: mit
base_model: unsloth/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- haitian-creole-asr
metrics:
- wer
model-index:
- name: Ayira Large Turbo V3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Haitian Creole ASR Dataset
type: haitian-creole-asr
args: 'language: ht, split: train'
metrics:
- name: Wer
type: wer
value: 5.613132085970648
Ayira Large Turbo V3
This model is a fine-tuned version of unsloth/whisper-large-v3-turbo on the Haitian Creole ASR Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.2041
- Wer: 5.6131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0906 | 2.9499 | 1000 | 0.1945 | 15.4483 |
0.0296 | 5.8997 | 2000 | 0.1862 | 6.4095 |
0.0032 | 8.8496 | 3000 | 0.1946 | 5.6375 |
0.0004 | 11.7994 | 4000 | 0.2041 | 5.6131 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1