File size: 8,333 Bytes
7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 51f0bca 7075cd1 51f0bca 7075cd1 51f0bca 7075cd1 51f0bca 7075cd1 51f0bca 7075cd1 51f0bca 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 9dedbd1 7075cd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
---
library_name: transformers
tags:
- sentiment-analysis
- bert
- fine-tuned-model
- NLP
license: apache-2.0
language:
- en
base_model:
- google-bert/bert-base-uncased
datasets:
- adilbekovich/Sentiment140Twitter
---
# Model Card for SentimentBERT
This model is a fine-tuned version of `bert-base-uncased` for sentiment analysis. It has been trained on the **Sentiment140 Kaggle dataset**, enabling it to classify text as **positive** or **negative**.
## Model Details
### Model Description
This model is fine-tuned using the `bert-base-uncased` architecture to perform sentiment analysis. It accepts text input and predicts whether the sentiment expressed in the text is positive or negative.
- **Developed by:** Debopam(Pritam) Dey
- **Funded by [optional]:** Not specified
- **Shared by [optional]:** Debopam(Pritam) Dey
- **Model type:** Sequence classification (binary sentiment analysis)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model [optional]:** bert-base-uncased
### Model Sources [optional]
- **Repository:** [SentimentBERT](https://huggingface.co/pritam2014/SentimentBERT)
- **Demo [optional]:** Coming Soon
## Uses
Here’s how to use the model for sentiment analysis:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load the model and tokenizer from the Hugging Face model hub
mymodel = AutoModelForSequenceClassification.from_pretrained("pritam2014/SentimentBERT")
mytokenizer = AutoTokenizer.from_pretrained("pritam2014/SentimentBERT")
# Preprocess the text input
def preprocess_text(text):
inputs = mytokenizer.encode_plus(
text,
max_length=50,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
return inputs
# Predict sentiment
def make_prediction(text):
inputs = preprocess_text(text)
with torch.no_grad():
outputs = mymodel(inputs['input_ids'], attention_mask=inputs['attention_mask'])
logits = outputs.logits
predicted_class_id = torch.argmax(logits).item()
sentiment_labels = {0: 'Negative', 1: 'Positive'}
return sentiment_labels[predicted_class_id]
# Example
text = "I love this product!"
print(make_prediction(text)) # Output: Positive
```
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
The model can be used for text classification tasks without additional fine-tuning.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("pritam2014/SentimentBERT")
model = AutoModelForSequenceClassification.from_pretrained("pritam2014/SentimentBERT")
from transformers import pipeline
# Initialize pipeline
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# Example input
tweets = [
"I love this product!",
"I'm not happy with the service.",
"It's okay, could be better."
]
# Predict sentiment
results = sentiment_pipeline(tweets)
for tweet, result in zip(tweets, results):
print(f"Tweet: {tweet}\nSentiment: {result['label']}, Score: {result['score']:.4f}\n")
```
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
Users can fine-tune the model on other sentiment datasets or adapt it for related tasks like emotion detection.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
The model is not suitable for multilingual sentiment analysis or highly nuanced text where sentiment depends on complex context.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
- The model may inherit biases present in the Sentiment140 dataset.
- It is designed for English text and may perform poorly on non-English or mixed-language text.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Use the model in scenarios where binary sentiment classification is sufficient. Avoid deploying it in critical systems without further testing for biases and limitations.
## How to Get Started with the Model
Refer to the "Uses" section above to see the sample usage code. For more details, visit the Hugging Face Hub page.
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The model was fine-tuned on the Sentiment140 dataset, which contains 1.6 million tweets labelled as positive or negative.
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- Optimizer: AdamW
- Batch size: 760
- Learning rate: 1e-5
- Epochs: 2
- Hardware: Kaggle T4 GPU
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
The model was evaluated on a validation split of the Sentiment140 dataset.
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** Kaggle T4 GPU
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
@misc{pritam2014SentimentBERT,
author = {Debopam(Pritam) Dey},
title = {SentimentBERT},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/pritam2014/SentimentBERT}},
}
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
The model performs well on short texts like tweets but may require further fine-tuning for longer or domain-specific text.
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
For questions or feedback, feel free to contact me via the Hugging Face repository or email at ([email protected]) |