File size: 8,333 Bytes
7075cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dedbd1
 
 
 
 
7075cd1
9dedbd1
7075cd1
 
 
 
 
 
 
9dedbd1
 
 
7075cd1
 
9dedbd1
 
7075cd1
 
 
 
 
 
9dedbd1
51f0bca
7075cd1
 
 
 
51f0bca
 
 
7075cd1
51f0bca
 
 
 
 
 
7075cd1
 
51f0bca
 
 
 
 
 
 
7075cd1
51f0bca
7075cd1
 
 
51f0bca
9dedbd1
 
 
7075cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dedbd1
7075cd1
 
 
 
 
9dedbd1
 
 
 
 
 
 
7075cd1
9dedbd1
 
 
 
 
7075cd1
9dedbd1
 
 
 
 
7075cd1
 
 
9dedbd1
 
 
 
 
7075cd1
9dedbd1
 
 
7075cd1
9dedbd1
 
 
 
 
 
 
 
7075cd1
9dedbd1
 
 
 
7075cd1
 
 
 
 
9dedbd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7075cd1
9dedbd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7075cd1
9dedbd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7075cd1
 
 
 
 
 
 
 
9dedbd1
 
 
 
 
 
 
 
 
 
 
 
 
7075cd1
9dedbd1
 
 
7075cd1
9dedbd1
 
 
7075cd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---

library_name: transformers
tags:
- sentiment-analysis
- bert
- fine-tuned-model
- NLP
license: apache-2.0
language:
- en
base_model:
- google-bert/bert-base-uncased
datasets:
- adilbekovich/Sentiment140Twitter
---


# Model Card for SentimentBERT

This model is a fine-tuned version of `bert-base-uncased` for sentiment analysis. It has been trained on the **Sentiment140 Kaggle dataset**, enabling it to classify text as **positive** or **negative**.

## Model Details

### Model Description

This model is fine-tuned using the `bert-base-uncased` architecture to perform sentiment analysis. It accepts text input and predicts whether the sentiment expressed in the text is positive or negative.

- **Developed by:** Debopam(Pritam) Dey
- **Funded by [optional]:** Not specified
- **Shared by [optional]:** Debopam(Pritam) Dey
- **Model type:** Sequence classification (binary sentiment analysis)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model [optional]:** bert-base-uncased

### Model Sources [optional]

- **Repository:** [SentimentBERT](https://huggingface.co/pritam2014/SentimentBERT)
- **Demo [optional]:** Coming Soon

## Uses

Here’s how to use the model for sentiment analysis:

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load the model and tokenizer from the Hugging Face model hub
mymodel = AutoModelForSequenceClassification.from_pretrained("pritam2014/SentimentBERT")
mytokenizer = AutoTokenizer.from_pretrained("pritam2014/SentimentBERT")

# Preprocess the text input
def preprocess_text(text):
    inputs = mytokenizer.encode_plus(
        text,
        max_length=50,
        padding='max_length',
        truncation=True,
        return_attention_mask=True,
        return_tensors='pt'
    )
    return inputs

# Predict sentiment
def make_prediction(text):
    inputs = preprocess_text(text)
    with torch.no_grad():
        outputs = mymodel(inputs['input_ids'], attention_mask=inputs['attention_mask'])
        logits = outputs.logits
        predicted_class_id = torch.argmax(logits).item()
    sentiment_labels = {0: 'Negative', 1: 'Positive'}
    return sentiment_labels[predicted_class_id]

# Example
text = "I love this product!"
print(make_prediction(text))  # Output: Positive
```
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use
The model can be used for text classification tasks without additional fine-tuning.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("pritam2014/SentimentBERT")
model = AutoModelForSequenceClassification.from_pretrained("pritam2014/SentimentBERT")

from transformers import pipeline

# Initialize pipeline
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

# Example input
tweets = [
    "I love this product!", 
    "I'm not happy with the service.", 
    "It's okay, could be better."
]

# Predict sentiment
results = sentiment_pipeline(tweets)
for tweet, result in zip(tweets, results):
    print(f"Tweet: {tweet}\nSentiment: {result['label']}, Score: {result['score']:.4f}\n")
```
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->


### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

Users can fine-tune the model on other sentiment datasets or adapt it for related tasks like emotion detection.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

The model is not suitable for multilingual sentiment analysis or highly nuanced text where sentiment depends on complex context.

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

- The model may inherit biases present in the Sentiment140 dataset.
- It is designed for English text and may perform poorly on non-English or mixed-language text.


### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Use the model in scenarios where binary sentiment classification is sufficient. Avoid deploying it in critical systems without further testing for biases and limitations.

## How to Get Started with the Model

Refer to the "Uses" section above to see the sample usage code. For more details, visit the Hugging Face Hub page.


## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

The model was fine-tuned on the Sentiment140 dataset, which contains 1.6 million tweets labelled as positive or negative.

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- Optimizer: AdamW
- Batch size: 760
- Learning rate: 1e-5
- Epochs: 2
- Hardware: Kaggle T4 GPU

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->
The model was evaluated on a validation split of the Sentiment140 dataset.

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** Kaggle T4 GPU
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

@misc{pritam2014SentimentBERT,
  author = {Debopam(Pritam) Dey},
  title = {SentimentBERT},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/pritam2014/SentimentBERT}},
}


**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

The model performs well on short texts like tweets but may require further fine-tuning for longer or domain-specific text.

## Model Card Authors [optional]

 [More Information Needed] 

## Model Card Contact

For questions or feedback, feel free to contact me via the Hugging Face repository or email at ([email protected])