Full-entry fine-tuning of SigLIP2
Collection
Test finetune
•
7 items
•
Updated
•
10
AI-vs-Deepfake-vs-Real-v2.0 is an image classification vision-language encoder model fine-tuned from
google/siglip2-base-patch16-224
for a single-label classification task. It is designed to distinguish AI-generated images, deepfake images, and real images using theSiglipForImageClassification
architecture.
"label2id": {
"Artificial": 0,
"Deepfake": 1,
"Real": 2
},
"log_history": [
{
"epoch": 1.0,
"eval_accuracy": 0.9915991599159916,
"eval_loss": 0.0240725576877594,
"eval_model_preparation_time": 0.0023,
"eval_runtime": 248.0631,
"eval_samples_per_second": 40.308,
"eval_steps_per_second": 5.039,
"step": 313
}
The model categorizes images into three classes:
!pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/AI-vs-Deepfake-vs-Real-v2.0"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def image_classification(image):
"""Classifies an image as AI-generated, deepfake, or real."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = model.config.id2label
predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=image_classification,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Classification Result"),
title="AI vs Deepfake vs Real Image Classification",
description="Upload an image to determine whether it is AI-generated, a deepfake, or a real image."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
The AI-vs-Deepfake-vs-Real-v2.0 model is designed to classify images into three categories: AI-generated, deepfake, or real. It helps in identifying whether an image is fully synthetic, altered through deepfake techniques, or an unaltered real image.
Base model
google/siglip2-base-patch16-224