Fashion Product Full Net Experimentals
Collection
Usage, Season, BaseColour, ArticleType, SubCategory, MasterCategory, Gender
β’
7 items
β’
Updated
β’
1
Fashion-Product-masterCategory is a vision model fine-tuned from google/siglip2-base-patch16-224 using the SiglipForImageClassification architecture. It classifies fashion product images into high-level master categories.
Classification Report:
precision recall f1-score support
Accessories 0.9611 0.9698 0.9654 11244
Apparel 0.9855 0.9919 0.9887 21361
Footwear 0.9952 0.9936 0.9944 9197
Free Items 0.0000 0.0000 0.0000 105
Home 0.0000 0.0000 0.0000 1
Personal Care 0.9638 0.9219 0.9424 2139
Sporting Goods 1.0000 0.0400 0.0769 25
accuracy 0.9803 44072
macro avg 0.7008 0.5596 0.5668 44072
weighted avg 0.9779 0.9803 0.9788 44072
The model predicts one of the following master categories:
!pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Fashion-Product-masterCategory" # Replace with your actual model path
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
0: "Accessories",
1: "Apparel",
2: "Footwear",
3: "Free Items",
4: "Home",
5: "Personal Care",
6: "Sporting Goods"
}
def classify_master_category(image):
"""Predicts the master category of a fashion product."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Gradio interface
iface = gr.Interface(
fn=classify_master_category,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Master Category Prediction Scores"),
title="Fashion-Product-masterCategory",
description="Upload a fashion product image to predict its master category (Accessories, Apparel, Footwear, etc.)."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
This model can be applied to:
Base model
google/siglip2-base-patch16-224