Fashion Product Full Net Experimentals
Collection
Usage, Season, BaseColour, ArticleType, SubCategory, MasterCategory, Gender
β’
7 items
β’
Updated
β’
1
Fashion-Product-subCategory is a vision model fine-tuned from google/siglip2-base-patch16-224 using the SiglipForImageClassification architecture. It classifies fashion product images into 45 fine-grained subcategories for retail and e-commerce applications.
Classification Report:
precision recall f1-score support
Accessories 0.9700 0.7519 0.8472 129
Apparel Set 0.9011 0.7736 0.8325 106
Bags 0.9275 0.9767 0.9515 3053
Bath and Body 1.0000 0.1111 0.2000 9
Beauty Accessories 0.0000 0.0000 0.0000 3
Belts 0.9684 0.9840 0.9761 811
Bottomwear 0.9445 0.9754 0.9597 2685
Cufflinks 0.8870 0.9444 0.9148 108
Dress 0.7857 0.7364 0.7603 478
Eyes 0.7500 0.0882 0.1579 34
Eyewear 0.9898 0.9991 0.9944 1073
Flip Flops 0.8558 0.9102 0.8822 913
Fragrance 0.9280 0.9530 0.9404 1001
Free Gifts 0.0000 0.0000 0.0000 104
Gloves 0.7000 0.3500 0.4667 20
Hair 0.8824 0.7895 0.8333 19
Headwear 0.9403 0.8601 0.8984 293
Home Furnishing 0.0000 0.0000 0.0000 1
Innerwear 0.9763 0.9347 0.9550 1806
Jewellery 0.9689 0.9527 0.9607 1079
Lips 0.9292 0.9271 0.9282 425
Loungewear and Nightwear 0.7604 0.6703 0.7125 464
Makeup 0.7904 0.8745 0.8303 263
Mufflers 1.0000 0.0526 0.1000 38
Nails 0.9450 0.9892 0.9666 278
Perfumes 0.0000 0.0000 0.0000 6
Sandal 0.8720 0.7940 0.8312 961
Saree 0.9320 0.9953 0.9626 427
Scarves 0.6316 0.7119 0.6693 118
Shoe Accessories 0.0000 0.0000 0.0000 4
Shoes 0.9759 0.9799 0.9779 7323
Skin 0.5455 0.4528 0.4948 53
Skin Care 0.7333 0.4490 0.5570 49
Socks 0.9417 0.9728 0.9570 698
Sports Accessories 0.0000 0.0000 0.0000 3
Sports Equipment 0.7083 0.8095 0.7556 21
Stoles 0.8871 0.6111 0.7237 90
Ties 0.9808 0.9884 0.9846 258
Topwear 0.9822 0.9914 0.9867 15383
Umbrellas 1.0000 1.0000 1.0000 6
Vouchers 0.0000 0.0000 0.0000 1
Wallets 0.9376 0.8605 0.8974 925
Watches 0.9790 0.9921 0.9855 2542
Water Bottle 0.0000 0.0000 0.0000 7
Wristbands 0.0000 0.0000 0.0000 4
accuracy 0.9568 44072
macro avg 0.7091 0.6270 0.6412 44072
weighted avg 0.9535 0.9568 0.9540 44072
The model predicts one of the following product subcategories:
"id2label": {
"0": "Accessories",
"1": "Apparel Set",
"2": "Bags",
"3": "Bath and Body",
"4": "Beauty Accessories",
"5": "Belts",
"6": "Bottomwear",
"7": "Cufflinks",
"8": "Dress",
"9": "Eyes",
"10": "Eyewear",
"11": "Flip Flops",
"12": "Fragrance",
"13": "Free Gifts",
"14": "Gloves",
"15": "Hair",
"16": "Headwear",
"17": "Home Furnishing",
"18": "Innerwear",
"19": "Jewellery",
"20": "Lips",
"21": "Loungewear and Nightwear",
"22": "Makeup",
"23": "Mufflers",
"24": "Nails",
"25": "Perfumes",
"26": "Sandal",
"27": "Saree",
"28": "Scarves",
"29": "Shoe Accessories",
"30": "Shoes",
"31": "Skin",
"32": "Skin Care",
"33": "Socks",
"34": "Sports Accessories",
"35": "Sports Equipment",
"36": "Stoles",
"37": "Ties",
"38": "Topwear",
"39": "Umbrellas",
"40": "Vouchers",
"41": "Wallets",
"42": "Watches",
"43": "Water Bottle",
"44": "Wristbands"
}
!pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Fashion-Product-subCategory" # Replace with your actual model path
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
0: "Accessories", 1: "Apparel Set", 2: "Bags", 3: "Bath and Body", 4: "Beauty Accessories",
5: "Belts", 6: "Bottomwear", 7: "Cufflinks", 8: "Dress", 9: "Eyes", 10: "Eyewear",
11: "Flip Flops", 12: "Fragrance", 13: "Free Gifts", 14: "Gloves", 15: "Hair", 16: "Headwear",
17: "Home Furnishing", 18: "Innerwear", 19: "Jewellery", 20: "Lips", 21: "Loungewear and Nightwear",
22: "Makeup", 23: "Mufflers", 24: "Nails", 25: "Perfumes", 26: "Sandal", 27: "Saree",
28: "Scarves", 29: "Shoe Accessories", 30: "Shoes", 31: "Skin", 32: "Skin Care", 33: "Socks",
34: "Sports Accessories", 35: "Sports Equipment", 36: "Stoles", 37: "Ties", 38: "Topwear",
39: "Umbrellas", 40: "Vouchers", 41: "Wallets", 42: "Watches", 43: "Water Bottle", 44: "Wristbands"
}
def classify_subcategory(image):
"""Predicts the subcategory of a fashion product."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Gradio interface
iface = gr.Interface(
fn=classify_subcategory,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Subcategory Prediction Scores"),
title="Fashion-Product-subCategory",
description="Upload a fashion product image to predict its subcategory (e.g., Dress, Shoes, Accessories, etc.)."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
This model is best suited for:
Base model
google/siglip2-base-patch16-224