SigLIP2 Content Filters 042025 Final
Collection
Moderation, Balance, Classifiers
•
7 items
•
Updated
•
2
Formula-Text-Detection is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is built using the SiglipForImageClassification architecture to distinguish between mathematical formulas and natural text in document or image regions.
Note: This model works best with plain text or formulas using the same font style
Classification Report:
precision recall f1-score support
formula 0.9983 1.0000 0.9991 6375
text 1.0000 0.9980 0.9990 5457
accuracy 0.9991 11832
macro avg 0.9991 0.9990 0.9991 11832
weighted avg 0.9991 0.9991 0.9991 11832
SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features https://arxiv.org/pdf/2502.14786
The model classifies each input image into one of the following categories:
Class 0: "formula"
Class 1: "text"
pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Formula-Text-Detection" # Replace with your model path if different
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
"0": "formula",
"1": "text"
}
def classify_formula_or_text(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_formula_or_text,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Formula or Text"),
title="Formula-Text-Detection",
description="Upload an image region to classify whether it contains a mathematical formula or natural text."
)
if __name__ == "__main__":
iface.launch()
Text
Formula
Formula-Text-Detection can be used in:
Base model
google/siglip2-base-patch16-224