|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- prithivMLmods/Multilabel-Portrait-18K |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
--- |
|
|
|
 |
|
|
|
# **Multilabel-Portrait-SigLIP2** |
|
|
|
> **Multilabel-Portrait-SigLIP2** is a vision-language model fine-tuned from [**google/siglip2-base-patch16-224**](https://huggingface.co/google/siglip2-base-patch16-224) using the `SiglipForImageClassification` architecture. It classifies portrait-style images into one of the following **visual portrait categories**: |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
Anime Portrait 0.9989 0.9991 0.9990 4444 |
|
Cartoon Portrait 0.9964 0.9926 0.9945 4444 |
|
Real Portrait 0.9964 0.9971 0.9967 4444 |
|
Sketch Portrait 0.9971 1.0000 0.9985 4444 |
|
|
|
accuracy 0.9972 17776 |
|
macro avg 0.9972 0.9972 0.9972 17776 |
|
weighted avg 0.9972 0.9972 0.9972 17776 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
# **Model Objective** |
|
|
|
The model is designed to **analyze portrait images** and categorize them into **one of four distinct portrait types**: |
|
|
|
- **0:** Anime Portrait |
|
- **1:** Cartoon Portrait |
|
- **2:** Real Portrait |
|
- **3:** Sketch Portrait |
|
|
|
--- |
|
|
|
# **Try it with Transformers π€** |
|
|
|
Install dependencies: |
|
|
|
```bash |
|
pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
Run the model with the following script: |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Multilabel-Portrait-SigLIP2" # Replace with actual HF model path |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
# Label mapping |
|
id2label = { |
|
0: "Anime Portrait", |
|
1: "Cartoon Portrait", |
|
2: "Real Portrait", |
|
3: "Sketch Portrait" |
|
} |
|
|
|
def classify_portrait(image): |
|
"""Predict the type of portrait style from an image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))} |
|
predictions = dict(sorted(predictions.items(), key=lambda item: item[1], reverse=True)) |
|
return predictions |
|
|
|
# Gradio interface |
|
iface = gr.Interface( |
|
fn=classify_portrait, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Portrait Type Prediction Scores"), |
|
title="Multilabel-Portrait-SigLIP2", |
|
description="Upload a portrait-style image (anime, cartoon, real, or sketch) to predict its most likely visual category." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
# **Intended Use Cases** |
|
|
|
- **AI Art Curation** β Automatically organize large-scale datasets of artistic portraits. |
|
- **Style-based Portrait Analysis** β Determine artistic style in user-uploaded or curated portrait datasets. |
|
- **Content Filtering for Platforms** β Group and recommend based on visual aesthetics. |
|
- **Dataset Pre-labeling** β Helps reduce manual effort in annotation tasks. |
|
- **User Avatar Classification** β Profile categorization in social or gaming platforms. |
|
|